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Abstract
Currently, ‚-emitting radionuclides are used almost exclusively in the clinic and in clinical radioim-
munotherapy studies. The main advantage of ‚-emitters is the relatively long path length in biologi-
cal tissue (in the mm range), which is sufficient to irradiate cancer cells that do not have bound radi-
olabelled antibody (cross-fire effect). This alleviates problems with inadequate uptake and heteroge-
neous distribution of radiolabelled antibodies in tumours. Hence, ‚-emitters provide a relatively uni-
form radiation dose to the tumour and it is generally accepted that this class of radionuclides is more
appropriate for radioimmunotherapy of solid tumours and large tumour burdens (> 0.5 cm). How-
ever, the shorter-range ·-emitters (50-100 mm) and the ultra-short range Auger electron-emitting ra-
dionuclides (the majority of electrons traverse a few nm), have been shown to be more efficient than
‚-emitters at inducing lethal lesions in single cells. It has been suggested that these classes of ra-
dionuclides may have the potential to provide a more favourable therapeutic index than ‚-emitters for
radioimmunotherapy of single tumour cells in the circulation, micrometastases and in certain cases,
minimal residual disease. The aim of this article is to discuss the different classes of radionuclides with
potential for clinical use in radioimmunotherapy. 

Hell J Nucl Med 2007; 10(2): 82-88

Introduction

R
adioimmunotherapy involves the use of specific anti-tumour antibodies to selectively
deliver a radionuclide to tumour cells. When compared to conventional radiotherapy,
the use of radiolabelled antibodies with a high degree of specificity for tumour-asso-

ciated antigens offers the potential for minimising damage to normal tissues by targeting the
radiation dose more specifically to the tumour. However, the majority of the clinical studies
(particularly for solid tumours) do not agree well with the theoretical expectation. A notable
exception to this trend is radioimmunotherapy of non-Hodgkin’s lymphoma. 

There are a number of limitations that are associated with radioimmunotherapy. These
include, heterogeneous antigen expression on tumour cells, generation of antigen-loss tu-
mour variants, non-absolute specificity of antibodies for tumour cell-antigens (for example,
antibodies may bind to differentiation antigens on normal cells), bone marrow toxicity from
the slow-blood clearance of antibodies and immunogenicity of antibodies – i.e. production of
human anti-mouse and human anti-chimeric antibodies [1, 2]. However, the major clinical
limitation of radioimmunotherapy, particular for treatment of solid tumours, results from in-
efficient uptake and non-optimal distribution of the relatively large (approximately 150 kDa)
radiolabelled antibodies in the tumour [3-5]. 

Radiopharmaceuticals, ‚-emitters
To circumvent some of the problems associated with radioimmunotherapy, ‚-emitting ra-
dionuclides particularly yttrium-90 (90Y) and iodine-131, (131I) are used almost exclusively in
the clinic and in clinical radioimmunotherapy studies. The range of the ‚-particles in biolog-
ical tissues (mean range in tissue equivalent matter of 0.8 mm for 131I and 2.7 mm for 90Y)
is sufficient to irradiate tumour cells that do not have bound radiolabelled antibody. This phe-
nomenon commonly referred to as the cross-fire irradiation effect [6, 7]. Hence, ‚-emitters
are used to alleviate the problems of inadequate uptake and heterogeneous distribution (re-
lated to uptake and antigen expression) of radiolabelled antibodies in tumour and therefore,
to provide a relatively uniform radiation dose to the tumour [8]. 

Radioimmunotherapy with anti-CD20 monoclonal antibodies labelled with the ‚-emitters
90Y or 131I has recently been introduced as a therapeutic modality for B-cell non-Hodgkin’s
lymphoma. The US Food and Drug Administration (FDA) has approved 90Y-ibritumomab
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tiuxetan (Zevalin; IDEC Pharmaceuticals Corp., San Diego CA)
and 131I-tositumomab (Bexxar; Corixa Corp., Seattle WA), for
clinical use. It should be noted that radioimmunotherapy of
non-Hodgkin’s lymphoma is the major exception to the gen-
eral trend observed in the clinical studies (i.e. relatively low re-
sponse rates to radiolabelled antibodies). In part, this is be-
cause lymphomas are more sensitive to immunotherapy and to
other cytotoxic agents [9]. Furthermore, appropriate antigens
(CD20 and CD22) have been identified and are targeted with
monoclonal antibodies [9, 10]. The majority of studies have fo-
cused on the CD20 antigen, which is preserved and expressed
ubiquitously throughout the human population [9]. This anti-
gen is expressed on B-cells (cell-specific) and not on plasma
cells (which produce immunoglobulin and are important for
protection from infection) or pluripotent stem cells (which pro-
duce cell precursors). It has been shown that the CD20 antigen
is important for cell cycle initiation and cell differentiation [10].
Importantly with respect to targeting, the antigen is anchored
into the membrane and is not shed into the circulation [10].

As discussed, for radioimmunotherapy of non-Hodgkin’s
lymphoma, the ‚-particle emitting radionuclides, 131I and 90Y
are used. The choice of 131I (‚: Emax 608 keV, Á: Emax 384
keV; t1/2 8.01 days) has been motivated in part because of the
extensive clinical experience with this radionuclide in the treat-
ment of thyroid disorders. Furthermore, the availability, the
convenient half-life and the simple radiolabelling chemistry of
131I are favourable properties of this radionuclide. Although,
the high-energy photon emitted by 131I is imageable and is
used to derive patient specific doses based on the uptake of
tracer-131I-labelled antibody, it results in undesirable non-spe-
cific irradiation of the whole body [10]. In contrast, 90Y (‚:
Emax 2.4 MeV; t1/2 64 hours) is a pure ‚-emitter. Unlike 131I,
which is incorporated into antibodies by direct iodination of ty-
rosine residues, 90Y is conjugated to antibodies via a chelator
(MX-DTPA) in a process requiring more elaborate chemistry
[10-12]. Due to the absence of an imageable g-emission, au-
tologous indium-111, 111In-labelled antibody is used for imag-
ing and dosimetry calculations prior to administration of ther-
apeutic doses of the 90Y-labelled antibody [10, 11].

Overall, the main advantage of using ‚-emitters is the rela-
tively long-range of the ‚-particles in biological tissues, which is
sufficient to irradiate tumour cells (by cross-fire) that do not have
bound radiolabelled antibody [6-8]. Paradoxically, the effective
range of the ‚-particles in tissue is sufficient to irradiate normal
neighbouring cells, resulting in toxicity. Irradiation of normal
bone marrow (the dose limiting organ in radioimmunotherapy)
has been noted in clinical radioimmunotherapy using 90Y-ibri-
tumomab tiuxetan and 131I-tositumomab [10, 13]. Neverthe-
less, the findings from the clinical studies have demonstrated
that toxicity is reversible and that both radiolabelled antibodies
are more effective than chemotherapy and immunotherapy
with unlabelled anti-CD20 antibody (rituximab) with respect to
producing clinically meaningful responses [9, 12].

Another medium-energy ‚-emitter, lutetium-177, 177Lu
(‚: 800 keV; t1/2 6.7 days), which has similar physical proper-
ties to 131I, also appears to have potential for use in radioim-

munotherapy [14, 15]. In a recent study it was demonstrated
that 177Lu-antibodies had a higher specificity index (i.e. less
non-specific cell killing) than analogous antibodies labelled with
90Y in Raji B lymphoma cells. This is not unexpected given the
much higher energy of the 90Y ‚-particle (2.4 MeV), which re-
sults in higher levels of non-specific irradiation of the medium
[15]. Similarly, 177Lu-LL1 antibody resulted in less non-specif-
ic toxicity than 90Y-LL1 in a human Raji B-cell lymphoma
xenograft model in mice. Interestingly, in this initial compara-
tive study it appeared that 177Lu-antibodies were slightly less
potent than 131I-labelled antibodies on a per decay basis [15].
However, it was concluded that this minor difference would not
be an overriding factor in the selection of the optimal radionu-
clide for clinical use [15]. Indeed, further research is required to
establish the efficacy of 177Lu-antibodies. In particular it would
be important to compare the in vivo stability of antibodies la-
belled with 177Lu and 131I, which are known to be prone to ex-
tensive dehalogenation in vivo. Experimental radioim-
munotherapy with 177Lu-labelled antibodies has generally been
insufficient due to the limited availability of the radionuclide.
Until recently, 177Lu was only available from a reactor with a
radioactive abundance of approximately 25%. Higher purity
177Lu (approximately 50%) is now available and anticipated
improvements in the production and purification of 177Lu will
allow further investigation of the potential clinical utility of this
radionuclide [15].

On the basis of dosimetry calculations it is generally ac-
cepted that ‚-emitters are the most appropriate radionuclides
for the management solid tumours and large tumour burdens.
The prevailing view is that ‚-emitters are optimal for treatment
of tumour lesions > 0.5 cm (given the inaccuracies and com-
plexity of theoretical dosimetry calculations, this is controver-
sial, for example, in a theoretical study it was concluded that
90Y and 131I would be optimal for the treatment of metastases
with diameters of 28-42 mm and 2.6-5 mm, respectively [16]).
In contrast, on the basis of in vitro cytotoxicity findings, in vivo
studies and upon theoretical dosimetry calculations, it has been
suggested that shorter-range ·-emitting radionuclides (effec-
tive ranges of only a few cell diameters) and Auger electron-
emitting radionuclides (effective ranges of molecular dimen-
sions) have the potential to provide a more favourable thera-
peutic index than ‚-emitters for radioimmunotherapy of single
tumour cells in the circulation, micrometastases and in certain
cases, minimal residual disease (small clusters of a few tumour
cells [8, 17-22]). In addition, a potential role for the shorter-
range radionuclides has been suggested for the treatment of
cancers, such as neoplastic meningitis and ovarian cancer,
which are characterized by thin sheets of tumour cells on body
cavities (Table 1 and Fig. 1) [19]. 

Radiopharmaceuticals, ·-emitters
It is well established that ·-particles (monoenergetic helium-4
nuclei) are more efficient in inducing cytotoxic lesions in single
cells than ‚-emitters [19, 23-26]. Due to their short-range
(mean range of approximately 50-100 mm in tissue equivalent
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cell surface antigen, CA125, a cell surviving fraction less than
0.01 could not be obtained in two ovarian cell lines, OVC-
433 (5x106 antigens per cell) and OVCAR-3 (6x106 antigens
per cell [26]). In contrast, in vitro cell survival studies indicate
that ·-emitting radionuclides are extremely potent in inducing
cytotoxicity [17]. Based on the cytotoxicity studies and on
dosimetry calculation it has been calculated that approximate-
ly 300 and 600 ·-particle decays on the cell-surface are suffi-
cient to inactivate 99% and 99.99% of the cell population, re-
spectively [24]. Furthermore, it has been estimated that 1-3 ·-
particle tracks through the cell nucleus are sufficient to induce
a cytotoxic lesion in the target cell [28]. 

Among the ·-emitting radionuclides, 211At (·: 5.87 and
7.45 MeV; t1/2 7.2 hours), bismuth-213, 213Bi (·: Emax 8.4
MeV; t1/2 45.6 minutes) and bismuth-212, 212Bi (·: Emean

7.8 MeV; t1/2 60.6 minutes) have received the most serious
consideration for use in radioimmunotherapy [19, 28]. In a se-
ries of studies, a greater therapeutic efficacy of antibodies ra-
diolabelled with 211At rather than with ‚-emitting radionu-
clides (131I or 90Y) has been observed in vivo, using models of
neoplastic meningitis in rats and models of ovarian cancer in
mice [19, 29]. Although complete findings have yet to be pub-
lished, 211At-labelled chimeric antitenascin antibody has been
used in a clinical radioimmunotherapy trial in patients with
recurrent malignant glioma [30]. Similarly, significant anti-
cancer effects and improvement in survival times with accept-

matter) and their high energy (e.g. Emax 7.45 MeV for astatine-
211, 211At), ·-particles have a high linear energy transfer
(LET, mean approximately 100 keV/mm compared to a mean
of approximately 0.2 keV/mm for ‚-particles [19]). High LET
radiations offer a number of distinct advantages for radioim-
munotherapy. A greater relative biological effectiveness is as-
sociated with high LET radiation (largely due to a higher prob-
ability of inducing double strand breaks), the cytotoxic effec-
tiveness of high LET radiation is only marginally dependent on
the dose rate (related to kinetics of repair of sublethal damage
and repopulation) and the cell cycle (cells in S-phase are more
resistant to the effects of low LET radiation [19]). Furthermore,
the oxygen enhancement ratio for high LET radiation is ap-
proximately one, hence hypoxic as well as euoxic tumour cells
may be treated with use of high LET radiations [19].

Both, in vitro cell survival studies and in vivo studies in mice
have confirmed that ·-emitting radionuclides are more potent
at inducing lethal lesions in single cells and at treating human
xenograft microtumours in mice, than ‚-emitting radionuclides
[17, 19, 24, 26, 27]. It has been demonstrated that ‚-emitters
such as 131I and 90Y are unable to exert efficient and specific
cytotoxicity in single tumour cells and that the majority of the
radiotoxicity results from cross-fire radiation from the radiola-
belled antibodies in the medium rather than from cell-associat-
ed radionuclide [23, 25]. In one particular study it was found
that using 131I-labelled OC125 antibody which binds to the
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‚-emitters
90Yttrium (90Y) 64.1 h 11.3 mm 90Y-ibritumomab tiuxetan (Zevalin) FDA approved for C20 positive

non-Hodgkin’s lymphoma 
131Iodine (131I) 8.0 d 2.3 mm 131I-tositumomab (Bexxar) FDA approved for C20 positive

non-Hodgkin’s lymphoma
177Lutetium (177Lu) 6.7 d 1.8 mm 177Lu-LL1 antibody investigated in mice bearing B-cell lymphoma

xenografts; limited availability

·-emitters
211Astatine (211At) 7.2 h 60 Ìm 211At-Mov18 antibody investigated in mice bearing human ovarian

cancer; limited availability
212Bismuth (212Bi) 60.6 m 90 Ìm 212Bi-B72.3 used in a murine model of human colon carcinoma;

short half life may limit to locoregional applications
213Bismuth (213Bi) 45.6 m 84 Ìm 213Bi-HuM 195 in clinical trial for CD33 positive acute or chronic

myeloid leukemia; short half life may limit to locoregional applications

Auger emitters
125Iodine (125I) 60.2 d < 100 nm 125I-A33 antibody used in phase I/II clinical trials in patients with

advanced colon cancer; long half life may limit clinical utility
123Iodine (123I) 13.2 h < 100 nm DNA-associated decay of 123I shown to be effective at inducing DNA

damage and cytotoxicity due to Auger component; relatively high
energy Á-emission used for diagnostic imaging 

111Indium (111In) 8.0 d < 100 nm 111In-anti HER2 antibodies shown to specifically induce cytotoxicity in
human breast and ovarian cancer cell lines; mainly used for imaging
and dosimetry prior to therapeutic administration of Zevalin

*The key properties and potential applications of the radionuclides in radioimmunotherapy are discussed in more detail in the text

Radionuclide Physical half-life Max range in tissue Clinical use or animal model studies/Key features*

Table 1. Characteristics of selected radionuclides with potential for clinical use in radioimmunotherapy
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able toxicity was observed using 212Bi-B72.3 targeting a hu-
man colon carcinoma in a murine model [31]. The ·-emitter
213Bi has also been investigated in numerous preclinical in
vitro and animal studies. In a notable endeavour aimed at
preparing and guiding clinical trials, the murine antibody,
M195 directed against the CD33 antigen expressed in
myeloid leukaemia cells was developed. Importantly, a hu-
manised version of the mouse anti-CD33 monoclonal anti-
body (designated HuM195) labelled with 213Bi has been
shown to have favourable pharmakokinetic and biodistribution
properties and a good toxicity profile in mouse models [33].
Furthermore, 213Bi-HuM195 was used in the first proof-of-
concept study for radioimmunotherapy in patients with
myeloid leukaemia [32]. 

Although in vitro (survival assays) and in vivo (radioim-
munotherapy of human tumour xenografts in mice and the clin-
ical trial in leukaemia patients) studies have demonstrated the
therapeutic potential of these radionuclides, there are a number
of limitations associated with their use in clinical radioim-
munotherapy trials. The general disadvantage is related to the
extreme cytotoxic potency of ·-particles, which could create
problems with respect to irradiation of normal healthy tissue
[28]. To avoid unacceptable irradiation of normal tissue it nec-

essary to use antibodies with very high affinity and specificity for
the target cancer cells and the ·-emitter-monoclonal antibody
conjugate must be very stable in vivo to minimize release of the
free radionuclide. There are also various radionuclide-specific
problems associated with ·-emitters. For example, a major lim-
itation of 211At is availability, since an accelerator for produc-
tion of the radionuclide is required in close proximity to the
place of application [28]. Although the bismuth radionuclides
are produced by long-lived parent nuclides and they can be ob-
tained from generators, their extremely short half-life is ex-
pected to limit their use to locoregional applications (for exam-
ple, intralesional injections for radioimmunotherapy of
melanoma or intraperitoneal injections for the treatment of mi-
crometastases from ovarian cancer [19, 28]). 

An alternative ·-emitting radionuclide, Actinium-225
(225Ac, ·: 8.38 MeV, ‚: 1.42 MeV; t1/2 10 days) with a com-
patible half-life for radioimmunotherapy, has recently been
shown to act as an atomic nanogenerator, emitting five ·-
and three ‚-particles as it decays [28]. It has been investigated
in various preclinical radioimmunotherapy model systems. For
example the humanised monoclonal antibody trastuzumab
(Herceptin), which recognizes the Her-2 receptor has been ra-
diolabelled with 225Ac has been shown to inhibit the growth of
breast cancer spheroids [34]. Furthermore, 225Ac-trastuzum-
ab was not toxic and was shown to extend survival time in
mice transplanted with ovarian cancer (SKOV3) cells [35]. In-
terestingly, the toxicity profile of 225Ac-HuM195 has been
investigated in non-human primates (cynomolgus monkeys) to
provide a starting point for calculating doses for human clini-
cal trials [36]. Phase I trials of 225Ac-HuM195 for radioim-
munotherapy in patients with CD33 positive advanced
myeloid leukaemia have been heralded [30], however clinical
findings have not appeared in a publication to date.

Auger electron emitters
The Auger electron emitters represent another class of ra-
dionuclides that has potential for use in radioimmunotherapy
[37-39]. Auger electron-emitting radionuclides decay by elec-
tron capture and/or internal conversion resulting in the emis-
sion of low energy Auger electrons. The Auger electrons tra-
verse very small distances (majority within a few nm) in bio-
logical tissue. Hence, emission of Auger electrons results in a
highly localized energy deposition in the immediate site of the
decaying radionuclide. 

The classical Auger electron-emitting radionuclide is 125I.
Decay of 125I by electron capture (100%) and internal con-
version (93%) results in the emission of numerous low energy
Auger electrons (average 21) the majority (90%) of which have
effective ranges of only molecular dimensions in tissue equiv-
alent matter [40]. It has been demonstrated that decay of DNA
incorporated or DNA bound 125I results in an intense focus of
radiochemical damage in the immediate site of decay. Se-
quencing gel studies indicated that the majority of DNA dam-
age (single and double DNA strand breaks) occurs within 4-5
bases from the decaying atom [41-43]. In general, studies
have demonstrated that decay of 125I that is incorporated in-
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Figure 1. Schematic representation of the path length of ‚-, ·- and Auger
emitting radionuclides. The paradoxical nature of ‚-emitting radionuclides
is highlighted. The relatively long path length of ‚-emitters is sufficient to
irradiate cancer cells that do not have bound radiolabelled antibody.
However, the cross-fire effect may also result in significant irradiation of
normal neighbouring tissues. The shorter path length of ·-particles results
in cross-fire irradiation, but only in the range of a few cell diameters. In
contrast, the ultra short-range Auger electron emitting radionuclides
deposit the majority of the radiation dose within molecular dimensions (a
few nm) from the site of decay. A consequence of the minimal cross-fire
effect induced by ·-particles and in particular Auger emitters, is the critical
need for homogeneous antigen expression on cancer cells for successful
radioimmunotherapy with the shorter range radionuclides.
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to DNA induces a double strand break with a probability of 1
[41-43]. Furthermore, the DNA damage induced by DNA in-
corporated and DNA bound 125I is only minimally modified by
radical scavengers (such a dimethyl sulphoxide) indicating a
high LET mode of damage [38-40]. In contrast, a low LET
mode of DNA damage that is scavengeable by dimethyl
sulphoxide for decay of free 125I-iodide in solution, has been
observed [44, 45]. 

Furthermore, cell culture studies have shown that nuclear
localization of the radionuclide is a requirement for the induc-
tion of high LET type cytotoxicity in mammalian cells [45-
47]. Briefly, results from the radiobiological clonogenic sur-
vival studies using 125I-iododeoxyuridine have indicated that
only 30-60 DNA incorporated 125I-decays are required to in-
duce a lethal lesion in a variety of cell-lines [45-47].

Unfortunately, it is not possible to deliver 125I to the nucle-
us using directly radiolabelled antibodies which bind to cell sur-
face antigens, despite the few claims of nuclear localization re-
ported [25, 48]. Therefore, in previous in vitro and in vivo
studies, it has been attempted to enhance the radiation dose to
the nucleus and therefore, to exert high levels of specific cyto-
toxicity with the use of 125I-labelled monoclonal antibodies that
are internalized into the cell following specific cell-surface anti-
gen binding and are accumulated in various intracellular com-
partments [21, 22, 49-51]. Furthermore, since the internalized
125I-labelled monoclonal antibodies are catabolised in lyso-
somes ultimately yielding free 125I-iodide which is rapidly and
efficiently released from the cells [52, 53], lysosomal residual-
izing forms of 125I, such as 125I-dilactitol-tyramine [54] or 125I-
IMP-R2 [21, 55] have been conjugated to the monoclonal an-
tibodies. Although these studies have achieved some en-
hancement of the nuclear dose and consequently of antigen-
specific cytotoxicity, compared to the nuclear radiation dose
and cytotoxicity achieved in studies involving targeting 125I-la-
belled antibodies to cell-surface antigens that are not internal-
ized [25, 56], this strategy did not realize the high levels of cy-
totoxicity which results from the decay of DNA-associated 125I
[47, 57]. Nevertheless, 125I-labelled monoclonal antibody A33
which recognizes an organ-specific internalizing antigen (A33
in the colon and small bowel), has been used in phase I/II clin-
ical trials in patients with advanced colon cancer [51]. This tri-
al indicated favourable biodistribution of the radiolabelled anti-
body. However, only modest therapeutic responses were ob-
served. Importantly, bone marrow toxicity was not observed af-
ter administration of activities as high as 1.295 GBq/m2 (350
mCi/m2) [51]. 

Although high LET type radiobiological effects have not
been observed using internalizing 125I-labelled antibodies, it
has been suggested on the basis of experimental findings and
theoretical calculations that 125I-labelled antibodies, that are
internalized and accumulated in intracytoplasmic vesicles, are
more efficient than 131I-labelled antibodies in inducing lethal
lesions in cells in vitro [21, 23, 25, 50]. In addition, it has
been shown that internalising 125I-labelled monoclonal anti-
bodies provide greater therapeutic effects than autologous an-
tibodies labelled with ‚-emitting radionuclides (131I and 90Y), in

human cancer xenograft models in mice [22, 58]. These stud-
ies indicate that 125I has the potential to provide a favourable
therapeutic index for radioimmunotherapy. However, the
minimal requirements for radioimmunotherapy with 125I are
that the antigen being targeted is expressed homogeneously
on the cancer cells and that following binding of the 125I-la-
belled antibody/antigen complex, is internalized into the can-
cer cells. 

It is anticipated that the long half-life of 125I (60.2 days)
may impose limitations (from a radioprotection standpoint
and with respect to therapeutic efficacy due to a slow dose
rate) for clinical use of this radionuclide in radioimmunothera-
py. Hence, with a view to in vivo and eventually clinical stud-
ies Auger electron-emitting radionuclides with shorter half-
lives may be more appropriate. The metal Auger emitting ra-
dionuclides gallium-67, 67Ga and 111In have a half-life (about
3 days for both) that is congruent with the pharmakokinetic
and biodistribution (tumour localization) profile of monoclon-
al antibodies in humans [14]. However, these radionuclides re-
quire more elaborate conjugation chemistry than iodine atoms
– incorporation of a metal chelating moiety in the antibody is
necessary. To minimize the modifications required in the ra-
diolabelling protocols, the Auger electron-emitting radionu-
clide that has been considered is 123I (t1/2 13.2 hours). The de-
cay of another iodine atom, 124I (t1/2 4.2 days), includes an
Auger component, however, due to limited availability the po-
tential of this radionuclide in radioimmunotherapy has not yet
been investigated. 

Iodine-123 decays by electron capture (100%) resulting
in a metastable tellurium-123, 123Te atom, which in turn de-
cays to the ground state by g-emission (84%) or by internal
conversion (16%). Given the short half-life and the emission of
a 159 keV photon which is suitable for imaging, 123I is rou-
tinely in diagnostic nuclear medicine. For therapeutic use the
Auger electron cascades resulting from the electron capture
and internal conversion processes are of interest. It has been
calculated that on average approximately 6-12 [59-61] Auger
electrons are emitted in the condensed phase per decay of 123I
(approximately 2-3 -fold less than the average number of elec-
trons emitted by 125I [40]). The results of theoretical studies
have indicated that the probability of induction of a double
strand break by decay of 123I in DNA is approximately 0.4
compared to a probability of 1 for induction of a double strand
break by 125I-decay in the same model [59]. Experimentally, it
has been demonstrated that DNA-associated 123I produces a
double stand break with a probability of 0.62 compared to
0.82 for 125I by investigating the plasmid breakage efficiency
of radioiodinated analogues of the DNA minor groove binding
ligand, Hoechst 33258 [62]. Furthermore, the radiotoxicity of
123I has been compared to that of 125I using experimental in
vitro cell survival assays [63]. In these studies 123I and 125I-
iododeoxyuridine was used to incorporate the radionuclide in-
to the DNA of Chinese hamster V79 lung fibroblasts. The re-
sults indicated that approximately 2.2 times more 123I decays
than 125I decays were required for D37 [63]. Overall, these
findings indicate that although somewhat less potent than 125I
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on a per decay basis, 123I is sufficiently efficient at inducing
DNA damage and cytotoxicity due to the Auger emissions.
Therefore, 123I may represent a more suitable choice than
125I for potential use in radioimmunotherapy given its much
shorter half-life.

Conclusion and future perspectives
Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma is
an important additional therapeutic modality to the radiation
oncology clinic. Despite the enthousiasm generated by the
FDA approval of Zevalin and Bexxar and the research efforts
over the past decade, the clinical success has not yet translat-
ed to other cancers. Nevertheless, there have been significant
advances and a number of radiolabelled antibodies have un-
dergone preclinical evaluation using in vitro and animal mod-
el systems, with encouraging results. Although the findings
are not comprehensive, the initial clinical trials using antibod-
ies labelled with ·- and Auger emitting radionuclides repre-
sents a significant achievement. 

Issues related to the affinity and specificity of the mono-
clonal antibody, to antigen expression and to the tumour type
and size are all important determinants of the therapeutic ef-
ficacy of radioimmunotherapy. Here the factors involved in
the selection of the optimal radionuclide for different treat-
ment scenarios were considered. The current dogma suggests
that the relatively long-range ‚-emitting radionuclides are
more well suited to the treatment of solid tumours and larger
tumour burdens due to the cross-fire effect. In contrast the
shorter range ·-emitters and the ultr·-short range Auger emit-
ters, which exhibit greater specific cytotoxic potency than ‚-
emitters, are better suited for locoregional applications and for
treatment of individual cancer cells in the circulation, mi-
crometastases and small clusters of cancer cells left after
surgery. However, there are currently no definitive guidelines
regarding radionuclide selection and much further research is
required to delineate the criteria. Generally, research has been
hampered the limited availability of certain radionuclides. To-
gether with the expected advances in antibody engineering
and in the identification of better cancer cell targets, the im-
provements in production and consequent growing availabili-
ty of radionuclides including 177Lu (‚), 225Ac (·) and 124I
(Auger), is generating excitement relating to the clinical po-
tential of radiolabelled antibodies.
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