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Abstract
No one can deny the signi�cant impact of arti�cial intelligence (AI) on everyday life, especially in the health 
sector where it has emerged as a crucial and bene�cial tool in Nuclear Medicine (NM) and molecular imaging. 
The objective of this review is to provide a summary of the various applications of AI in single-photon emis-
sion computed tomography (SPECT) and positron emission tomography (PET), with or without anatomical 
information (CT or magnetic resonance imaging (MRI)). This review analyzes subsets of AI, such as machine 
learning (ML) and Deep Learning (DL), and elaborates on their applications in NM imaging (NMI) physics, in-
cluding the generation of attenuation maps, estimation of scattered events, depth of interaction (DOI), time of 
�ight (TOF), NM image reconstruction (optimization of the reconstruction algorithm), and low dose imaging.
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Introduction

The term AI was coined in 1955 to broadly describe the use of computer algorithms 
to perform tasks associated with human intelligence, such as learning or problem-
solving [1, 2]. In recent years, AI has become increasingly prevalent in radiology, 

driven in part by the fact that since 2015, visual recognition using AI has had a lower er-
ror rate than that of humans [2, 3]. This has been made possible by the rapid progress in 
AI technology, which has been enabled by increasing computational power, novel al-
gorithms, and available data. The healthcare industry has not been immune to these ad-
vances, with a growing amount of data being generated by novel imaging procedures 
and diagnostic imaging procedures, enabling opportunities for personalized and preci-
sion medicine. However, this wealth of information is overwhelming for physicians, and 
sophisticated AI algorithms are needed to exploit it. Speci�cally in medical imaging, and 
particularly in Nuclear Medicine imaging (NMI), AI can be used to improve the entire 
imaging pipeline, from improving image quality to increasing acquisition speed and 
lowering costs during image acquisition and reconstruction. Additionally, AI can be uti-
lized for image denoising, registration, and translation between di�erent modalities. Fi-
nally, many AI applications for medical image analysis are being developed, including 
abnormality detection, segmentation, and computer-aided diagnosis [4].

Terminology

This section presents several de�nitions of machine learning and related concepts in or-
der to fully understand their structure and usage, with a focus on their applications in 
NM, speci�cally in positron emission tomography (PET) and single-photon emission 
computed tomography (SPECT) imaging, which will be discussed in upcoming sections. 
Starting with the de�nitions provided by Tang et al. (2018) and Lundervold et al. (2019), a 
subtype of AI known as "machine learning" (ML) employs algorithms through data ana-
lysis without explicit programming [1, 5]. After learning from human-de�ned teaching 
cases, ML is frequently associated with resolving logic-related issues. Machine learning, 
being a subset of AI, is not a single algorithm but rather analyzes a set of training data to 
build a model that carries associations between the variables that are important for a 
speci�c outcome. Data extraction and �ltration typically require handcrafted features, 
requiring more human involvement [6]. Regarding the subsets of ML, the �rst and most 
crucial is deep learning (DL). Chartrand, Castiglioni et al. (2017, 2021) emphasize that DL
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automates many parts of input extraction, enabling less hu-
man intervention [6-8]. Tang et al. (2018) describe DL as ad-
ding several processing layers (depth) to detect complex fe-
atures in an image [1]. Schulz et al. (2020) suggest that lo-
gistic regressions can be combined into hierarchies with ne-
ural networks, allowing for intricate interactions between in-
put variables to improve model performance [9]. In DL, the 
model may accept raw data, such as images, rather than 
summary features that rely on human interaction. The hu-
man intervention in DL is far more limited in contrast to ML 
[6-8]. Deep learning consists of three sub�elds: Arti�cial ne-
ural networks (ANN), convolutional neural networks (CNN) 
and generative adversarial networks (GAN). Arti�cial neural 
networks have linked nodes with weighted paths, where 
each node has parent nodes that it responds to, an activa-
tion function, a �ring threshold, and an output value. Arti�-
cial neural networks and their communication are compa-
rable to that of neurons [7, 9]. While an ANN typically rece-
ives feature data as input, a CNN instead, uses a convolu-
tional process to extract features from the image itself [1]. 
Convolutional neural networks systematically traverse an 
image after applying a neural-network layer to a speci�c 
area of the image. By alternating convolutional layers with 
pooling layers, CNN sample and condense features, which 
results in lower computational requirements [7, 9]. Finally, 
GAN consist of two networks, a generator and a discrimi-
nator, which play a zero-sum game to reduce the di�erence 
between fake and genuine inputs. Generators produce �cti-
tious input data to reduce this di�erence, while the discrimi-
nator sorts the genuine and fake inputs to maximize e�ci-
ency [7]. To better comprehend the structure and chain of 
command, all of this information is summarized in Figure 1.

According to Uribe et al. (2019), big data, or at least, large 
datasets for training, the availability of improved hardware, 
and the fact that ML is an e�ective tool for analyzing extrac-
ted features in radiomics have all led to increased usage of 
ML in recent years [10]. The �eld of AI known as ML is utmost 
signi�cance. For a very long time, traditional ML techniques 
like naive Bayes, support vector machines, and random fo-
rests were used extensively in the medical �eld. Positron 
emission tomography (PET) [15], single-photon emission 
computed tomography (SPECT) [11, 12], prognosis PET [13], 
SPECT [14], lesion classi�cation PET [15], SPECT [16, 17], and 
imaging physics are some of the applications of ML in NM 

imaging [18]. Arti�cial neural networks, GAN, and other DL 
technologies have advanced quickly in recent years and ha-
ve occasionally outperformed traditional ML. The use of DL 
in NM includes the diagnosis of disease using PET [19], 
SPECT [20,21], imaging physics using PET [22], SPECT [23], 
image reconstruction using (PET [24],SPECT [25]) image de-
noising (PET [26, 27], SPECT [28]), image segmentation (PET 
[29], SPECT [30]) and image classi�cation (PET [31], SPECT 
[32]). A similar approach is presented in [2, 33-35], referring 
to the detection and classi�cation of diseases or lesions, au-
tomated image segmentation, pre-analysis, and quantita-
tion, the extraction of radiomic features from image data, 
image reconstruction, case triage and reporting prioritiza-
tion, research and data mining, and natural language pro-
cessing as examples of speci�c ML capabilities. In summary, 
the aim of ML and its subsets is to achieve optimal replica-
tion while ensuring the best possible �t to the observed da-
ta, leading to improved predictive performance [36].

Imaging physics � Data correction
This section provides a thorough analysis of the implemen-
tation of AI in imaging physics-data correction, particularly 
in the generation of attenuation maps, correction of scatter 
events, and detection of photon position. Attenuation maps 
and scatter correction are currently the focal point of intense 
research in nuclear medicine for PET and SPECT imaging, 
with several AI groups contributing to the �eld [37].

Attenuation correction (AC)
Obtaining high-resolution PET images is challenging due to 
photon attenuation, which is the loss of photon �ux intensity 
through a medium. One example of an unavoidable factor 
that causes attenuation is the photon's interaction with body 
tissue before detection. For larger samples of people, this can 
lead to image distortion, artifact formation, and loss of resolu-
tion. Attenuation correction (AC) is one method used to cor-
rect attenuation on an individual basis, which takes place du-
ring the data's image processing stage after it has been col-
lected. However, the lack of a direct measurement of photon 
attenuation makes it di�cult to obtain accurate attenuation 
maps for PET/MR scans or PET imaging alone [11]. The majo-
rity of suggested AC methods are based on the broader ima-
ge-to-image translation �eld of DL, which is a general AI task 
[38]. These advancements aim to eliminate the need for ana-
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tomical image data by directly producing AC images from 
non-AC PET data [39], to produce CT equivalent-based AC 
maps from MR images in multimodality PET/MR [40], and to 
improve the attenuation maps produced by maximum like-
lihood reconstruction of activity and attenuation (MLAA) 
approaches [41]. To automate the AC process for PET images 
without input from a di�erent anatomical image, such as a 
CT scan, Liu et al. (2018) recently developed a deep ML algor-

18ithm. Initially, �uorine-18-�uorodeoxyglucose ( F-FDG) 
PET/CT datasets were used to train the model. As a result, it 
was possible to create and re�ne continuously valued "pse-

18udo-CT" images solely using the uncorrected F-FDG ima-
ges that served as the basis for the attenuation map. Deep 

18AC's output, an AC F-FDG image, was found to be quantita-
tively accurate with typical errors under 1% [42]. Similarly, 
Ladefoged et al. (2019) implemented a deep unsupervised 
transfer learning encoder-decoder method for PET/ MR-AC 
intended for kids with possible brain tumors [43]. Hwang et 
al. (2019) used a modi�ed U-Net to generate the attenuation 
maps for whole-body PET/MRI [41], where U-Net is a speci-
alized convolutional network architecture for biomedical 
image segmentation [44]. High-resolution features can be 
combined in the output layers thanks to the contracting 
path enhancement provided by U-Net [45]. According to 
Cheng et al. (2021), GAN is more widely used in attenuation 
map generation and forecast than other DL [45]. Shi et al. 
(2020) designed a GAN to produce the SPECT attenuation 
map obliquely from the emission data. The SPECT images 
from the scatter window and photopeak window served as 
their inputs, and this method can successfully uncover any 
attenuation-related hidden information in the emission data 
[46]. Cycle-consistency networks known as Cycle-GAN are a 
subset of GAN. A Cycle-GAN is composed of two mirror-
symmetric GAN and has been used for whole-body PET AC 
according to Dong et al. (2019, 2020) [47, 39]. In [48], GAN is 
referred to as a speci�c type of GAN that aims to perform 
image translation when dealing with unpaired data, as is do-
ne for MRI-based PET attenuation correction. Similar work is 
done by Armanious et al. (2020) [49], who developed and as-

18sessed a conditional GAN method for the AC of F-FDG PET 
images of the brain. Looking to the future [50, 51], residual 
encoder-decoder networks can produce attenuation and 
scatter-corrected PET images without the use of attenuation 
maps, starting from the non-corrected images.

Scatter correction (SC)
A gamma photon may experience Compton or Rayleigh 
scattering as it travels through a scintillation crystal before 
being absorbed in a di�erent detector block or pixel through 
photoelectric absorption. Since no optical photons are pro-
duced, Rayleigh scattering, an elastic process without ener-
gy transfer, is essentially undetectable. On the other hand, 
the inelastic Compton interactions reduce the amount of 
energy available for subsequent photoelectric absorption 
by converting a portion of the gamma energy into scintilla-
tion light proportional to the scattering angle. These Com-
pton scattered events are simple to observe for interactions 
between di�erent crystals or pixels, but it is di�cult to iden-
tify the �rst gamma interaction, which can degrade images 
in PET or SPECT due to incorrectly assigned LOR or counts. 

As a result, they are frequently thrown away, which reduces 
their sensitivity [4]. When it comes to SC, the scatter sino-
grams could be created using the emission and attenuation 
raw data from PET or SPECT imaging [36, 24], or they could 
be created directly using SC images (typically combined 
with AC) using non-corrected PET images as the network's 
input data [50]. In order to teach their CNN to replicate the 
scatter distributions of 57 (training) bed positions, Berker et 
al. (2018) used measured PET emission data and attenuation 
correction factors as inputs. They then reconstructed PET 
images using reference and estimated scatter distributions 
for SC, using the model to forecast scatter estimates for the 
14 remaining (validation) bed positions. In the same paper, it 
is also mentioned that the application of AI technology in 
particular regions (such as the brain and lungs) has better SC 
when compared to whole-body imaging [52]. Finally, two 
CNN were suggested by Qian et al. (2017) to calculate the SC 
for PET. The convolutional layer and the fully connected layer 
of the �rst network, which only had six layers overall, were 
used to predict multiple scatter pro�les from a single scatter 
pro�le. The total scattering distribution (both single and 
multiple scattering) was directly derived from the emission 
and attenuation sinograms using the second network. In 
this instance, the network structure remained the same. As a 
training label, a scattering Monte Carlo simulation was used 
[53].

Photon position detection � Depth of interaction (DOI)
The lack of DOI decoding in PET can result in incorrect line-
of-response (LOR) assignment for coincident non-perpendi-
cular events, leading to lower accuracy in image reconstruc-
tion. As an alternative, a linear method based on scintillation 
light sharing through a common light guide on the front sur-
face of the crystal was developed for continuous DOI estima-
tion [54]. Later, a neural network estimator was used to en-
hance the linear method. The SiPM array's measured ener-
gies are used as input features to forecast a continuous DOI 
position. Compared to the linear approach, the dense neural 
network and CNN performed similarly, but the accuracy im-
proved by 12% to 26%. The crystal array's uniformity was also 
signi�cantly improved [54]. Michaud et al. (2015) also cre-
ated a neural network to determine the LOR in PET for triple 
coincidences, where one 511keV photoelectric event occurs 
simultaneously with two additional singles S1 and S2 (where 
S is the position of the photon's position detection), whose 
combined energies are also 511keV. Analytically determi-
ning which single lies on the LOR under ideal conditions is 
frequently possible by considering the relationship between 
the scattering angle and energy deposit. However, these 
analytical techniques su�er from low energy resolution and 
positioning accuracy. The DL approach seeks to address the-
se limitations by naturally accounting for them with realistic 
training data. Regarding PET detectors, their primary goal is 
to stop as many of the 511keV gamma rays as possible and 
produce output signals that can be detected, saved, and 
analyzed [56]. Monolithic detectors are a distinct category of 
detectors that provide easier access to DOI data and are not 
limited by pixel size for spatial resolution. Early studies have 
demonstrated that neural networks can provide superior 
spatial resolution with good uniformity and can predict the
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location of the impinging object for oblique incidences 
without the need to correct for DOI [57-59]. Later works ad-
ded DOI as an additional output, enabling 3D positioning 
[60-62].

Time of �ight (TOF)
The positron annihilation position can be determined more 
precisely along the LOR in time-of-�ight (TOF) PET, which 
utilizes interaction timing data. By incorporating this data 
during image reconstruction, the quality of the scan can be 
signi�cantly improved [4]. In a study conducted by Berg and 
Cherry, it was demonstrated that CNN are capable of accura-
tely predicting the TOF di�erence from the detector signals 
themselves [63]. In order to predict the TOF di�erence bet-
ween two detectors, the study utilized the outputs of two 
opposing detector pixels, which were digitalized using 100 
ps binning and then stacked side by side. Since the crucial ti-
ming information is primarily present in the �rst few arriving 
scintillation photons, only the signals' brief rising edges we-
re used. This method resulted in a 23% increase in timing re-
solution compared to constant fraction discrimination and a 
20% increase compared to leading edge detection, demon-
strating promising results.

Image reconstruction
Arti�cial intelligence technology has been utilized for nuclear 
medicine image reconstruction, particularly in PET reconstruc-
tion [64]. While AI can help address important reconstruction 
issues, such as the transformation between the sinogram and 
image domains or the displacement of regularization in con-
ventional algorithms, it cannot provide a complete solution to 
the inverse problem. In science, an inverse problem refers to 
the process of determining the causal factors that produced a 
set of observations. Although AI has made it possible to im-

prove imaging quality without excessive investments in hard-
ware [45], it is not a panacea for all imaging challenges. Visvikis 
et al. (2022) have highlighted a fundamental paradigm shift 
with the inclusion of AI in the reconstruction process. Curren-
tly, measured data are mapped to an estimate of the �nal ima-
ge by training a reconstruction operator with su�ciently va-
ried and diverse data to account for all conceivable imaging 
possibilities [36]. In direct reconstruction, training occurs bet-
ween the raw data (represented by sinograms or projections) 
and the reconstructed images [65]. Newer methods, such as 
using GAN that were originally proposed for image-to-image 
translation [66], make direct AI reconstruction computati-
onally e�cient after training is completed. This approach can 
avoid the inaccurate assumption modeling inherent in con-
ventional methods [64]. One of the best examples of direct DL 
reconstruction is AUTOMAP (automated transform by mani-
fold approximation) for DeepPET [65]. AUTOMAP suggests a 
generalized data-driven approach to inverse problems by lear-
ning a mapping from sensor-domain to image-domain data, 
which implicitly learns a low-dimensional joint manifold of the 
data from both domains during training. The AUTOMAP aut-
hors emphasize that it applies to generalized reconstruction 
issues and also provide an analysis of PET data. In 2018, Zhu et 
al. reported that using manifold approximation automatic 
transformation, reconstruction can be re-encoded as a data-
driven supervised learning task [67]. The network includes a 
CAE structure (convolutional autoencoder) with three com-
pletely connected layers to improve artifact reduction and re-
construction accuracy for sinogram data from noisy and un-
der-sampled acquisitions. When Zhu et al. (2018) applied 

18AUTOMAP to F-FDG PET data, they produced images that 
were comparable to those created using conventional recon-
struction techniques.

Another innovative idea was presented by Häggström et al.

18Figure 2. Reconstruction results using the traditional algorithm and Zhu et al.'s method. Human F-FDG PET sinogram data (A) was reconstructed using (B) FBP, (C) OP-
OSEM, and (D) AUTOMAP. Compared with FBP, AI results are signi�cantly improved and can generate results that are visually similar to OP-OSEM algorithms.
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(2019) who developed a convolutional encoder-decoder 
network called Deep-PET that uses sinogram data as input 
to create quantitative PET images. Based on metrics such as 
relative root mean squared error (lower by 53% and 11%, res-
pectively), structural similarity index (higher by 11% and 1%, 
respectively), and peak signal-to-noise ratio, DeepPET was 
found to produce images of higher quality than the �ltered 
back projection and OSEM methods (higher by 3.8 and 1.1 
dB, respectively). DeepPET also demonstrated a decrease in 
computational cost for image reconstruction by producing 
images 3 and 108 times faster than the �ltered back projec-
tion and OSEM methods, respectively [65]. Going deeper in-
to the DL subsets, Yang et al. (2018) proposed a patch-based 
image enhancement scheme using a multilayer perception 
(MLP) ANN model with backpropagation to improve the 
MAP (maximum a posteriori) reconstructed PET images. The 
MLP model was trained using 28 image patches that were 
reconstructed with the MAP algorithm. The MLP method 
was able to produce images with less noise than the MAP re-
construction algorithm, resulting in a smaller unachievable 
region [68]. For CNN, Hong et al. (2018) improved the image 
resolution and noise properties of PET scanners with large 
pixelated crystals by using a deep residual convolutional ne-
ural network (CNN) [69]. Kim et al. (2018) demonstrated that 
iterative PET reconstruction using a denoising CNN with lo-
cal linear �tting improved image quality and was resistant to 
noise-level di�erences [70]. Another CNN approach is from 
Liu et al. (2019) who created an image reconstruction algor-
ithm using ML neural networks, consisting of three modi�ed 
U-Nets (3UNet), to increase the signal-to-noise ratio of PET 
images obtained from multimodal PET/MR image data 
without the need for a high-dose PET image. The reconstruc-
ted PET image from the 3U-Net model using PET/MR data 
had a better signal-to-noise ratio compared to those using 

PET input data alone or PET/MR in a 1U-Net model [71]. 
Lastly, ResNet, a network architecture based on appending 
numerous residual blocks one after the other instead of 
using an encoder-decoder style network with symmetrical 
skip connections, has potential in image reconstruction. 
ResNet was modi�ed and applied to denoising PET images 
in [72]. A signi�cant analysis of the usage of AI in Image re-
construction is seen in Figure 2 [45].

Low dose imaging
The use of radioactive tracers in PET imaging has raised con-
cerns [73] due to the potential risk of developing cancer 
from high levels of radiation exposure. Therefore, it is prefer-
red to lower the dose of radioactive tracer administered to 
patients in order to reduce radiation exposure [74]. Especi-
ally in children and young adults undergoing repeated 
scans, dosimetry and dose reduction are an issue [75]. A re-
duction in the use of radiotracers has been made in an e�ort 
to lessen this potential risk in PET imaging. Due to the inhe-
rent noise in low-dose PET images, it is challenging to derive 
qualitative and/or quantitative conclusions from the data 
[11]. In addition, lowering the dose causes a low signal-to-
noise ratio (SNR) and information loss, both of which have a 
signi�cant impact on clinical diagnosis. Furthermore, low-
dose PET image reconstruction presents a challenging prob-
lem for iterative reconstruction algorithms due to its poor 
conditioning [73]. In order to resolve this, e�orts have been 
made to create ML techniques that would permit PET/MR 
imaging with fewer radiotracers while maintaining the 
diagnostic quality of the image. The use of ML algorithms to 
tackle this problem simulates a low dose using a portion (ro-
ughly 1% to 25%) of PET data that was collected from a full-
dose image. Using only the low-dosage data as input, the ML 
method then forecasts the images of a full dose [11].  In [73],
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or to complete incomplete sinogram data. B) PET/SPECT images are produced directly from sinogram data using AI technology. (C) AI technology is used to create PET/ 
SPECT images by directly enhancing the back-projection data. (D) Iterative reconstruction methods mixed with AI technologies. SPECT stands for single photon emission 
computed tomography, and PET is for positron emission tomography.



a DL technique is suggested that uses an encoder-decoder 
residual deep network with concatenate skip connections to 
solve this problem. The proposed method can produce bet-
ter results than the state-of-the-art methods and recon-
struct images with comparable quality using just 0.5% of the 
original regular dose, according to the analysis of ultra-low-
dose clinical data. Similarly, Xiang et al. (2017) proposed 
using a CNN to predict full-dose PET images from PET ima-
ges taken at 1/10th of a full dose [74]. The ROI statistics in the 
estimated images are generally on par with those in the ac-
tual full-dose images. In order to simulate a low-dose acqu-
isition while still using the entire set of MR data, Chen et al. 
(2019) used the amyloid tracer Neuraceq from simultaneo-
usly acquired PET/MR imaging modalities to analyze one-
hundredth of the acquired PET data scans, which is roughly 
the radiation exposure equivalent of a transcontinental 
�ight. Following that, the experimental PET/MR was used as 
the reference standard for ML methods to predict the full-
dose PET image. The experimentally acquired full-dose ima-
ge was found to be satisfactorily reproduced by the simu-
lated full-dose PET image [76]. In the study of Xiang et al. 
(2017) a DL architecture is seen to estimate the high-quality 
standard-dose PET (SPET) image from the combination of 
the low-quality low-dose PET (LPET) image and the accom-
panying T1-weighted acquisition from MRI. A comparison of 
this proposed method to state-of-the-art methods using va-
lidations on real PET/MRI data from the human brain de-
monstrates that it can provide competitive estimation qu-
ality of the PET images. As an example, this method estima-
tes an entire SPET image in about 2 seconds as opposed to 
the state-of-the-art method's 16 minutes, demonstrating 
how e�ective it is for testing on new subjects. The aforemen-
tioned outcomes show how this method can be used in ac-
tual clinical applications [77]. In the same context, Wang et 
al. (2021) managed to construct a novel technique for sepa-
rating high-quality full-dose PET images from low-dose 
ones based on 3D conditional GAN (3D c-GAN). In GAN, a 
discriminator network and a generator network are simulta-
neously trained with the intention of outperforming the ot-

her. In the proposed 3D c-GAN, which are similar to GAN, the 
model is conditioned on an input low-dose PET image and 
produces a corresponding output full-dose PET image. 
Experimental results demonstrate that our proposed 3D c-
GAN method outperforms the benchmark methods and 
achieves signi�cantly better performance than the state-of-
the-art methods in both qualitative and quantitative measu-
res [78]. In another study, Wang et al. (2021) recently demon-

18strated that the use of AI has the potential to lower the F-
FDG dosage to a 1/8 dose equivalent (0.18MBq/kg) while 
still producing interpretable images. Standardized uptake 
value (SUV) was untouched [75]. Another review negoti-
ating the low-dose images is [11], in which a shallow ANN is 
developed that served as a learning-based denoising sche-
me using synaptic vesicle glycoprotein 2A radiotracer and 
image patches from 5 individuals' PET scans as the sample 
data. UCB-J. The authors processed 3-D image patches from 
reduced-count PET images using a MAP reconstruction al-
gorithm as a learning-based denoising scheme, resulting in 
simulated full-count reconstruction image patches from the 
reduced-count data. Closing the section on lose dose ima-
ging, it is worth mentioning the fact that recent papers refer 
to the potential of AI to forecast the post-therapy dosimetry 
of radiopharmaceuticals on an organ or voxel level. The com-
plex relationship between the patient data collected prior to 
treatment and the radiation dose distribution received fol-
lowing treatment has been uncovered by the development 
of GAN, which may now be used to forecast the voxel-wise 
dose distribution for treatment planning. The training of an 
AI dosimetry prediction model also needs precise dose esti-
mation. To replace Monte-Carlo simulation for voxel-wise 
dosimetry estimation, DL techniques have been developed 
[79, 80]. To improve dosimetry estimation from SPECT or PET 
measurements, preliminary results show that these met-
hods are computationally e�ective when taking into acco-
unt individual tissue density distributions as well as the he-
terogeneity of the radiopharmaceutical concentration. The 
low-dose imaging network structure is widely shown in Fi-
gure 5.

Figure 4. Dose rate maps estimated by (a) direct Monte Carlo, (b) VSV kernel convolution, and (c) deep convolutional neural network.
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In conclusion, the implementation of AI in NM Physics and 
Imaging is now a reality, and its existing applications are su�-
cient to demonstrate its utilization, both theoretically and, mo-
re importantly, practically. While the full potential of AI in this 
�eld is not yet fully understood, the �rst steps towards reali-
zing it have already been taken. Despite its imperfections, the-
re is no denying that AI will undoubtedly play a signi�cant role 
in the future of healthcare.
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