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Abstract

Objective: Planar dosimetry is often performed in developing countries due to its simplicity during basic qu-
antitative dosimetry. The geometric mean method is often used during planar dosimetry and imaging counts
can be corrected for background, attenuation and scatter. The aim of our study was to develop computerized
software called Masterdose that may be used for therapeutic isotope planar organ personalized dosimetry.
Materials and Methods: Masterdose software uses various methods to correct for background, scatter and
attenuation. We also introduced a method to convert imaging counts to activity on the software, which is Ja-
va based and runs on Windows, Linux and Macintosh platforms. Results: Three user interfaces named image
processing, quantification and dosimetry were developed for the software. Masterdose could quantify kidney
and liver doses of lutetium-177-DOTA-0-Tyr3-octreotate ('”’Lu-DOTATATE) patients. The software was valida-

ted through calculation of the kidney and liver doses of ten neuroendocrine tumour patients (NET) treated

with ”’Lu-DOTATATE. Conclusion: Masterdose presents an option for planar quantification that can be used

as a quality control tool to verify imaging counts and perform dosimetry in particular organs.
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Introduction

lanar whole-body imaging is carried out by translating the patient and bed in the

z-direction between an opposed dual head gamma camera, in the anterior and

posterior position [1]. These planar whole-body images are degraded by factors
like background, attenuation and scatter which limit the quantitative ability of this mo-
dality. These factors occur due to the interaction of emitted photons with tissue before
the photons are detected externally by the gamma camera. Attenuation describes the
reduction in detected photons due to interactions such as photoelectric absorption or
Compton scatter [2]. This interaction probability depends on the photon energy, mate-
rial composition and the amount of material [2]. Compensation is usually applied to cor-
rect for artifacts during patient imaging by accounting for fewer counts due to attenu-
ation [3].

Planar quantification using scintillation cameraimaging and conjugated views remain
the most widely used method for attenuation correction [3, 4]. During this method, a ge-
ometric mean (GM) of the count rate is calculated with two opposed scintillation camera
images. The measured count rates in the GM method depends on attenuation between
the two views and not the source depth. In planarimaging, source depthin the direction
parallelto the projectionis not resolved. This complicates activity quantification,as more
than one organ can contribute to a particular pixel value in the projection image. There-
fore, the GM method is theoretically independent of the source depth and gives “reaso-
nable”dose estimates for large organs without position overlap and background activity
[5,6]. However, this method generally reduces the image contrast and the detectability
forsmall lesions.

Several researchers have developed in-house computational software for radionucli-
de quantification in Nuclear Medicine. Example, in the study of Li et al. (2020) [7], they de-
veloped a comprehensive 3D dosimetric software, BIGDOSE, with new features ofimage
registration and virtual computed tomography (CT) for patient-specific dosimetry. The
software produced organ dose errors of -9.59%+9.06%, -8.36+5.82%, -23.41%+6.67%
and -6.05%2.06% for liver, spleen, kidneys and lungs, while OLINDA/EXM comparati-
vely produced -25.72%+12.52%, -14.93%+10.91%, -28.63%+12.97% and -45.30%=*
5.84% respectively. In recent studies, more research and commercial dosimetric software
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have been developed. These include HERMES® [8], RAYDOSE
[9], PLANET® [10], OEDIPE [11], VoxelMed [12], VRAK [13],
JADA [14], STRATOS® [15], and VIDA [16]. Ramos et al. (2017)
[17] have reviewed several of these software codes for internal
dosimetry. The aim of our study was to put forward a notion for
therapeutic isotope planar organ personalized dosimetry us-
ing computerized software from the perspective of a develo-
ping country.

Materials and Methods

Masterdose development

Masterdose was written in Java (Sun Microsystems) program-
ming language. User interfaces (Ul) were developed using
JavaFX, which is the latest version for desktop applications.
Three Ul were designed for image processing, quantification
and dosimetry, as indicated in the theoretical framework de-
sign (Figure 1). The software was designed using a java prog-
ramme based on upgraded Image J software. The underlying
framework from Image J was used to zoom images and retri-
eve counts. Counts were acquired by drawing organ region of
interest (ROI) on planar images at different time intervals.
Background counts were generated by drawing ROl around
general activity update on patientimages.

The quantification user interface was developed from writ-
ten algorithm for counts of activity to radionuclide activity
conversion (Figure 2).
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Figure 1.Theoretical framework design of Masterdose software.
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The authors developed the software to correct for back-
ground, attenuation and scatter counts. All planar images we-
re acquired using the GM method on a dual headed Philips
Marconi Meridian gamma camera (New York, USA). This gam-
ma camera did not have a CT component that could be used
for attenuation correction. To overcome the shortcoming,
authors determined a “generic attenuation correction factor”
(9ACF) using a 70keV transmission energy and 20mAs scout
scan of an anthropomorphic Alderson Rando Phantom (ARP),
demonstrated (Figure 3). Scan image was presented in 256x
256 matrix.

The torso of the ARP had horizontally transacted with 2.5cm
thick slices and was used to mimic a patient [18]. Each region
of the ARP had holes, which were plugged with bone-equiva-
lent, soft-tissue-equivalent and lung-tissue-equivalent pins
that resemble the human body. The dimensions of the regions
aregiven (Table 1).

Table 1. Dimensions of the torso region of anthropomorphic phan-
tom.

ARP Torso Dimensions (mm°)
Region 1 300 x 100 x 180
Region 2 300 x 100 x 220
Region 3 300 x 100 x 200

The skeletons of the ARP were polymer mouldings; which
reproduced the shape, mass density and attenuation co-
efficients of cortical bone. The lungs were moulded from
syntactic foam, with a specific density of 0.30g/cm’ [18].
Equation (1) was used to determinethe gACF.

Ijet

gACF =1In I —Zu,ﬂxi (1)

X

Region 1

Region 2

Region 3

Figure3. ARP phantom used to determinea gACF

where,
| =transmissionfor a patient thickness
l..=countsonthedetector

p=attenuation coefficient for different materials
x=different patient thicknesses

Scatter corrections were performed using the triple-ener-
gy window(TEW) technique demonstrated in Equation (2).

I‘upp&?'r Wpeak
+ X 2
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where,
l,..e IS the scatter estimate,
lwer@and ... are the scatter counts from lower and upper
energy windows respectively,
and W, W,.... and W_, are the window widths of the

lower, upper

lower, upper and peak windows respectively.

The scatter correction method, had two auxiliary energy
windows, one above and the other just below the photopeak
energy window [19]. The scatter in the photopeak was then
estimated using a trapezoidal approximation. The position
and width of the energy windows were carefully selected.

Radionuclide quantification and dose evaluation

The kidney doses of ten patients that underwent peptide the-
rapy using lutetium-177-DOTA-0-Tyr3-octreotate (”Lu-DOTA-
TATE) were calculated using the developed Masterdose
software. The patients were classified using the Eastern Co-
operative Oncology Group (ECOG) system to assess the pati-
ent performance status (Table 2).

Scintigraphic DICOM images of the patients were retrieved
and imported into Masterdose for the dose estimations. The
patients used in this study generally had advance disease, as
demonstrated by the example (Figure 4).

“Counts to activity” correction was performed using a 5mL
syringe with a 37MBq "’Lu prepared in a petri dish. The camera
heads were set to “H-mode acquisition” with the petri dish sus-
pended 10cm above the collimator as demonstrated (Figure 5).
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Table 2. ECOG classification of patient performance status.

Grade ECOG classification

0 Fully active, able to carry on all pre-disease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature,
e.g., light house work, office work

2 Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about more than 50% of
waking hours

3 Capabile of only limited self-care, confined to bed or chair more than 50% of waking hours

4 Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair

5 Dead

Figure 4. Whole body images of a patient with advanced liver disease.

©4d 029 LD/

177

Figure 5. Demonstration of the ~Luacquisitioninapetridish.
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Background images were then acquired with no source in
place near the gamma cameras for the same number of co-
unts. Four million counts were then acquired with a 15 percent
(%) energy window width. Radionuclide counts were conver-
ted to activity using Equation 3 [20].

-1
1 Ty — T, In2 T
Countsto Activity = ——| €, % exp (u lnz) X ( ) 1- exp(— acd 1112) (3)
Acal Thaty Thar Thary

where,
A_is the radionuclide activity in the petri dish,
C,, is the counting rate derived from the reconstructed
image (counts/dwell time),
T,isthestarttimeat 10cm,
T..is the duration of the acquisition at 10 cm,
T.,is the time of activity calibration,
T,.is half-life of 'Lu

Masterdose software was designed to generate a time acti-
vity curve. The area under the curve was determined using the
trapezoidal method shown in Equation (4) to generate the ac-
cumulated count in the organ.

1+ y2
Cumalated counts = Z(J 2 J ) X (x2—2x1) (4)

The organ dose on the Masterdose software was calculated
through Equation (5), multiplying the accumulated count with
“S-values” The“S-values” on the Masterdose software were ob-
tained from Organ Level Internal Dose Assessment/EX-ponen-
tial Modeling (OLINDA/EXM) software [27], which included 10
whole-body phantoms.

D= Z Cumulated counts X s — value (5)

The “S-values” were corrected for the mass of the organ as
demonstrated in Equation (6).

mass s — value
s —value = self /cross dose s — value x —— ( )
mass phantom

Masterdose software was designed to generate a full PDF
dosimetry report. The report was generated using iText fra-
mework. JCharts was used to create the charts on the screen.

Results

Masterdose has capability to quantify counts of activity for
each acquired image, which plays an important role in pati-
entdosimetry [21-23].The software corrects for background

counts, attenuation and scatter during image quantifica-
tion. Table 3 gives the results obtained for the gAFC used on
Masterdose.

Table 3. Determined gAFC from the average ACF from anthropo-
morphicphantom.

ARP Torso Dimensions (mm°) ACF
Region 1 300 x 100 x 180 2.00
Region 2 300 x 100 x 220 3.1
Region 3 300 x 100 x 200 2.88
gAFC 2.66

The photon energy spectrum of 70keV, used to obtain the
results in (Table 3), was similar to a study by Minarik et al.
(2005) [24]. For this energy spectrum, the differences bet-
ween the mass attenuation coefficients of various soft tis-
sues are small, since the dominant photon interaction pro-
cess was Compton scattering. Other studies have also
shown similar results [25, 26], mass attenuation coefficients
were equal for both lung and soft tissue. Linear attenuation
coefficient differences were governed by the difference in
mass densities. This study therefore endorses the use of the
gAFCfor attenuation correction in agamma camera without
aCT component.

The ten patients whose data were considered in this study
had NET condition of the adrenal gland, liver, endocrine and
lung. The "’Lu-DOTATATE patient data, including gender,
NET siteand ECOGis given (Table 4).

Table 4. Data of NETs patients treated with”’Lu-DOTATATE.

Gender

ID (MIF) NET site ECOG
1 F Adrenal gland 0
2 F Liver 0
T e 2
4 M Right lung 0
5 F Left lung 0
6 M Liver 0
7 F Liver 2
8 M Pancreas 2
M Liver 2
10 F Liver 0
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The photopeak of interest used in this study for the TEW
technique was the main photopeak of ’Lu, 208keV, as this was
the main energy peak used often forimage quantification [21].
The main energy window was therefore, 192.4keV to 223.6keV
with a width of 31.2keV. The lower energy window was 177.97
keV to 192.4keV with a width of 14.43keV. The upper energy
window was 223keV to 240.37keV with a width of 16.77keV.
The TEW counts generated for the ten ’Lu-DOTATATE patient
cases are given (Table 5).

Table 5. TEW counts generated on Masterdose for the 10 patients.

Parameter Quantity

Number of patients 10
Minimum 4102

TEW counts Maximum 4139
Mean (+SD) 4122 (£12)

Once the counts were corrected for attenuation and scatter,
the resultant counts were converted to activity. The software
subtracts all scattered counts from the background corrected
quantified count and multiplies the attenuation corrected co-
unts. The corrected counts obtained were then divided by “co-
unts to activity” conversion factor.

The factor used to convert “counts to activity”for the ”’Lu pa-
tients in our study was 6.5 counts per second per Mbq through

Home User Management

Load

Image No

Equation (3). All imaging were performed with medium ener-
gy collimators and planar energy window settings. “Counts to
activity” obtained on the Philips Marconi Meridian gamma ca-
mera were comparable to the manufacturer's specifications
[28].

The Masterdose user interface homepage is demonstrated
(Figure 6), allowing for patient identification and graphical de-
monstration of image counts uptake in a particular organ.

Numerical example of the trapezoidal modelling of kidney is
demonstrated (Table 6).

Table 6. Trapezoidal modelling for the liver.

Parameter Kidneys Liver
Number of
patients 10

Minimum 11072 22717
Accumulated .
Activity Maximum 17510 42816
(MBg.h) Mean 14301 32812

Configuration

Estimated doses to the kidneys and liver for the ten patients
on the Masterdose software are given (Figure7).

The administered "’Lu primarily secretes through the kid-
neys as seen from the scintigram (Figure 4) and in the estima-
ted doses reported (Figure 7). This makes the kidneys the do-
se-limiting organs when treating tumours with "’Lu-DOTA-
TATE. To counter act and reduce the high kidney retention, a
positively charged amino acid, L-lysine was co-infused to

competitively inhibit the proximal tubular reabsorption of

Help

Mo content in table

Draw Graph Gonerate Report

Figure 6. Home page of Masterdose software userinterface demonstrating Patient number 1 data. Blue-Kidney, Orange-Liver.
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the "’Lu-DOTATATE. The co-administration of amino acid led Sample of the Masterdose generated report is given (Figure 8).
to significant reduction in the renal absorbed dose for our stu- The S-values and mass conversion factors used for the dose
dy. estimation of the kidneys and liver are given (Figures 9-12).

Estimated doses on Masterdose software

H Kidneys
I I | I I I | | I N
1 2 3 4 5 6 7 8 9 10

Patients

=
o

Self Dose (Gy)
= e w
[ L o T ¥ s B PR I ¥, |

o
o

Figure 7. Estimated doses on Masterdose.

Medical Scan Report

Study Name
Patient Name
Patient Surname
Radionuclide
Date
Kidney Dose
Liver Dose

Figure 8. Generated report from Masterdose showing patient dose data.
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Figure 11. Massoforgansin Adult Male phantom [27].

Target Organ Mass (g)

Adrenals 1.63E+01
Brain 1.42E+03
Breasts 3.51E+02
Gallbladder Wall 1.05E+01
LU wall 1.67E+02
Small Intestine 6.77E+02
Stomach Wall 1.58E+02
ULl wall 2.20E+02
Heart Wall 3.16E+02
Kidneys 2 _99E+02
Liver 1.91E+03
Lungs 1.00E+03
Muscle 2_80E+04
Ovaries 8.71E+00
Pancreas 9.43E+01
Red Marrow 1.12E+03
Osteogenic Cells 1.20E+02
Skin 3.01E+03
Spleen 1.83E+02
Testes 3.91E+01
Thymus 2.09E+01
Thyroid 2.07E+01
Urinary Bladder Wall | 4.76E+01
Uterus 7.90E+01
Total Body 7.37E+04
Target Organ Mass (g)

Adrenals 1.40E+01
Brain 1.20E+03
Breasts 3.60E+02
Gallbladder Wall 8.00E+00
LU Wall 1.60E+02
Small Intestine 6.00E+02
Stomach Wall 1_40E+02
ULI Wall 2.00E+02
Heart Wall 2_40E+02
Kidneys 2.75E+02
Liver 1.40E+03
Lungs 8.00E+02
Muscle 1.70E+04
Ovaries 1.10E+01
Pancreas 8.50E+01
Red Marrow 1.30E+03
Osteogenic Cells 9.00E+01
Skin 1.79E+03
Spleen 1.50E+02
Thymus 2.00E+01
Thyroid 1.70E+01
Urinary Bladder Wall | 3.59E+01
Uterus 8.00E+01
Total Body 5.69E+04

Figure 12. Massoforgansin Adult Female phantom[27]
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Discussion

In most developing countries planar imaging is often the
only means of performing dosimetry. Although not as
accurate as single photon emission computed tomography
(SPECT)/CT quantification dosimetry, planar quantification
dosimetry provides an advantage in cases when whole body
uptake is of interest through axial coverage [21]. The basic
knowledge of planar quantificationis also a method that can
be used for dosimetry teaching purposes and may be used
as a quality control tool to verify counts in particular organs,
asdemonstrated by resultsin this study.

The Masterdose design is a multiplatform tool, which runs
on any Windows, Linux and Macintosh platform. Each Ul on
Masterdose was tested against hand calculations by the
authors, ensuring correctness. Compared with the effects of
scatter, the effects of attenuation are larger in magnitude [6].
The use of a gAFCrepresents a unique option by Masterdose
software, studies have shown that without any attenuation
correction, organ dose results may be inadequate withan er-
ror as large as £60% [21-23]. Masterdose software allows
users to enter attenuation, scatter and “counts to activity”
correction factors performed by the medical physicist, for
each collimator, gamma energy and energy window setting
used by a specific hospital. This feature allows medical physi-
cists to use Masterdose software for dosimetry quantifica-
tion of various therapeutic isotopes at multiple hospitals.
One challenge experienced, however, was placing the scat-
ter energy windows on the Philips Marconi Meridian gamma
camera, due to the gamma camera's age. The authors ne-
eded assistance from the manufacturer for this. The Master-
dose software allows for planar dose determination of the
kidneys and liver. The generation of a PDF file and print op-
tion also further assists with therapeutic planning of the pa-
tient.

Masterdose software was designed to not limit the num-
ber of images that may be uploaded for time-point calcu-
lations. Time-points may be generated a few hours after the
injection, one day after, close to the effective half-life of the
therapeutic isotope or three times the effective half-life, al-
lowing for customized determination of the moleculartime-
integrated activity coefficients.

The Masterdose software was validated against OLIN-
DA/EXM [27]. Our software seamlessly accepts planar ima-
gesfrom gamma cameras, and there is the capability for user
to zoom images, which aids in the drawing of ROI. All ROI
was corrected for background, attenuation and scatter as
demonstrated from this study. To maintain the accuracy of
the RO, it was drawn on the first image of a patient and co-
pied to subsequent patient images. A limitation of the Mas-
terdose software, however, is that it cannot load PET co-re-
gistered with CT images. Also, not part of the software's abi-
lity is the correction for ROl overlap. Both these limitations
will be addressed in the next version of the Masterdose soft-
ware.

In conclusion, Masterdose software is an option that can be
used for planar dosimetry in developing countries due to its
multi-task platforms that allows for quantification of any
therapeuticisotope. The software can be used to track accu-

mulative doses for different patient therapeutic cycles, limi-
ting dose to organs at risk such as the kidneys and liver, whil-
st optimizing tumour doses. Masterdose also has the ability
of being used for multi-center dosimetry.
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