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Abstract
Objective: To investigate a deep learning technique, more speci�cally state-of-the-art convolutional ne-
ural networks (CNN), for automatic characterization of polar maps derived from myocardial perfusion ima-
ging (MPI) studies for the diagnosis of coronary artery disease. Subjects and Methods: Stress and rest po-
lar maps corresponding to 216 patient cases from the database of the department of Nuclear Medicine of 
our institution were analyzed. Both attenuation-corrected (AC) and non-corrected (NAC) images were in-
cluded. All patients were subjected to invasive coronary angiography within 60 days from MPI. As the initial 
dataset of this study was small to train a deep learning model from scratch, two strategies were followed. 
The �rst is called transfer learning. For this, we employed the state-of-the-art CNN called VGG16, which has 
been broadly exploited in medical imaging classi�cation tasks. The second strategy involves data augmen-
tation, which is achieved by the rotation of the polar maps, to expand the training set. We evaluated VGG16 
with 10-fold cross-validation on the original set of images performing separate experiments for AC and 
NAC polar maps, as well as for their combination. The results were compared to the standard semi-quanti-
tative polar map analysis based on summed stress and summed di�erence scores, as well as to the medical 
experts' diagnostic yield. Results: With reference to the �ndings of coronary angiography, VGG16 achieved 
an accuracy of 74.53%, sensitivity 75.00% and speci�city 73.43% when the AC and NAC polar maps were in-
corporated into one single image set. Respective �gures of MPI interpretation by experienced Nuclear Me-
dicine physicians were 75.00%, 76.97% and 70.31%. The accuracy of semi-quantitative polar map analysis 
was lower, 66.20% and 64.81% for AC and NAC technique, respectively. Conclusions: The proposed deep 
learning model with data augmentation techniques performed better than the conventional semi-quanti-
tative polar map analysis and competed with doctor's expertise in this particular patient cohort and ima-ge 
set. The model could potentially serve as an assisting tool to support interpretation of MPI studies or could 
be used for teaching purposes.
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Introduction

Myocardial perfusion imaging (MPI) with single photon emission computed to-
mography (SPECT) is a well-established method for the identi�cation of 
hemodynamically signi�cant coronary artery disease (CAD), the assessment 

of major adverse cardiac event risk and the evaluation of myocardial viability [1, 2]. How-
ever, artifacts from tissue attenuation of radioactivity degrade the quality of MPI studies 
and pose diagnostic dilemmas. To address this matter, SPECT prone imaging, external 
radioactive sources providing a transmission map for attenuation correction (AC), as 
well as various software techniques, have been proposed [3]. The advent of hybrid 
SPECT/CT technology enabled computed tomography (CT) images to serve as trans-
mission maps for the AC of SPECT data [4]. Images produced by CT hold many advan-
tages: they are obtained in seconds or a few minutes (depending on the CT device) and 
generally provide high quality transmission maps, there is no radioactivity cross-talk 
with emission images and the life of the X-ray tube is very long. High-e�ciency SPECT 
scanners, equipped with solid-state detectors and specialized collimators, have dra-
matically improved the count sensitivity and the image resolution. They enable shorter 
acquisition times facilitating imaging patients in multiple positions to assess image arti-
facts or the implementation of low radiation protocols, by performing standard time ac-
quisitions or stress-only protocols [5].  

Commonly, Nuclear Medicine experts analyze a considerable number of diagnostic 
tests daily. Besides MPI �ndings, the electrocardiogram (ECG) and ECG changes during 
stress, as well as the results of previous tests are also reviewed [6]. Despite its advances, 
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MPI still performs sub-optimally for the prediction of CAD 
[2], obliging the doctors to take into consideration other rele-
vant information also [7]. This includes symptoms, age, gen-
der, previous CAD history, CAD predisposing factors, conco-
mitant diseases, etc [8]. Consequently, MPI interpretation in 
everyday practice is often somehow subjective. Moreover, 
the whole diagnostic procedure is time-consuming. Utilizing 
an MPI automated image analysis and characterization sys-
tem, could potentially liberate doctors from lengthy proce-
dures or act as an auxiliary tool for educational purposes.

The recent advances in arti�cial intelligence, the availabi-
lity of extensive medical data, and the continuous improve-
ments in computational capabilities, enable engineers to de-
sign complex and more accurate computer-aided diagnostic 
systems [9]. 

Over the last �ve years, the �eld of deep learning is thoro-
ughly explored, and new techniques have emerged [10]. 
Convolutional neural networks (CNN) [11], which are the es-
sence of deep learning, are considered to be a promising me-
thod for medical image analysis [12]. Deep learning is an au-
tomatic feature extractor method, which is aided by machine 
learning algorithms to distinguish the signi�cant features 
from images.

Before the emergence of deep learning, computer-aided 
knowledge extraction from medical images was performed 
with handmade feature extraction, which was painful and ti-
me-consuming. Despite the reliability of the results, de�ning 
the most signi�cant features from an image usually required 
statistical analysis, as well as extensive data preprocessing. 

Our aim in this work was to investigate the e�ectiveness of 
CNN to characterize MPI images and to compare with ex-
perts' diagnostic yield. 

Patients and Methods

Patients
Over a period of one year (from 16/2/2018 to 27/2/19) 1078 
consecutive patients underwent gated-SPECT myocardial 

99mperfusion imaging (MPI) with Tc-tetrofosmin in the de-
partment of Nuclear Medicine of our hospital. Two-hundred 
and twenty-nine of these (21.2%) were subsequently sub-
jected to invasive coronary angiography (ICA) within 60 da-
ys from MPI. After excluding 13 patients with inconclusive 
MPI results or missing ICA reports, the studies of 216 patient 
cases were �nally included in the present work. The study 
was approved by the Ethical Committee of our Institution. 
The nature of the study waives the requirement to obtain in-
formed consent.  Patients' characteristics are listed in Table 
1. A hybrid SPECT/CT gamma-camera (In�nia, Hawkey-4, 
GE Healthcare) was used for MPI imaging. Computed tomo-
graphy-based AC in both stress and rest images was applied 
in all cases. Vasodilator stress with adenosine was imple-
mented in 155 patients and treadmill exercise or combined 
vasodilator-exercise test in the remaining. 

Methods

MPI interpretation  
Three experienced Nuclear Medicine physicians (NDP, TS and 
DJA of the authors) had been employed prospectively in the 
interpretation and reporting of MPI studies. Their diagnosis 
relied on the inspection of the full set of tomographic slices 
and polar maps obtained from both AC and non-attenuation 
corrected (NAC) studies. Pretest probability of CAD, patient's 
history, previous tests results, baseline ECG and ECG changes 
during stress were incorporated in the �nal MPI interpreta-
tion. Myocardial perfusion imaging reports were considered 
positive for CAD if they described a reversible tracer defect of 
any extent or a �xed defect not normalized by AC implemen-
tation, accompanied by normal/near normal wall motion or 
thickening. Depending on the clinical context, small defects 
or defects attributed to other conditions (e.g. recent myo-
cardial infarction with residual peri-infarct ischemia or speci-
�c ECG conduction abnormalities producing mild non-rever-
sible defects) were considered suggestive of no �ow-limiting 
CAD. 
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Table 1. Patient characteristics.

Clinical characteristics Frequency

No 216

Age (mean±sd) 66.2±10.4 years

Sex (male/female) 88%/12%

History of CAD 49%

Previous myocardial infarction 20%

Previous revascularization 
(PCI/CABG)*

36%

CAD predisposing factors

Previous stroke 2%

Hypertension 82%

Dyslipidemia 68%

Smoking 39%

Diabetes 34%

Peripheral arteriopathy 6%

End stage renal failure 3%

Family history of premature CAD 16%

*PCI: percutaneous coronary intervention; CABG: coronary artery by-
pass grafting



Semi-quantitative polar map analysis
The standard semi-quanti�cation method of polar map ana-
lysis, depending on summed stress, rest and di�erence sco-
res (SSS, SRS, SDS) was also implemented. The positivity cri-
terion for NAC studies was SSS>3 and SDS>1, while for AC 
SSS>0 and SDS>0. 

Coronary angiography interpretation
Invasive coronary angiography was considered positive for 
�ow-limiting CAD if there was >50% stenosis of the left main 
artery or if lesions causing >70% lumen stenosis of the main 
coronary arteries or their major branches were detected. 
Fractional �ow reserve (FFR) measurements were under-
taken in case of intermediate (50%-70%) stenoses. An FFR 
value <0.8 was considered positive for �ow-limiting CAD.

Convolutional neural networks
Convolutional neural networks is a deep neural network, 
which utilizes convolution layers and pooling layers, to ex-
tract useful information from the input data, usually connec-
ting the extracted features to a fully connected layer (i.e. a ne-
ural network) [13]. They exhibit impressive performance on a 
variety of machine learning tasks [14].

A convolution operation is performed as a �lter, which is 
actually a table of weights, is sliding throughout the image, 
which is converted to an array format, containing pixel va-
lues. An output pixel produced at every position is a weig-
hted sum of the input pixels (the pixels that the �lter has pas-
sed from). The weights of the �lter, as well as the size of the 
table (usually called �lter size or receptive �eld), are constant 
for the duration of the scan. Therefore, convolutional layers 
can seize the shift-invariance of visible patterns and depict 
robust features [15]. Usually, after a set of convolutional lay-
ers, pooling layers follow.

The pooling operation computes a speci�c norm over 
small areas, thereby achieving translation invariance. This 
operation aggregates small pitches of pixels and down-sam-
ples the photo aiming to reduce the parameters of the data. 
This operation reduces the computational cost dramatically, 
especially when the input images are large, and the net-
work's trainable parameters are exponentially increased, due 
to the network's depth. The most common pooling opera-
tion used in developing CNN is max-pooling, which outputs 
the most pixel value of the area. 

Non-linearities are desirable for CNN to detect complex 
and non-linear features. Therefore, commonly, after a convo-
lutional operation, an activation function follows. An activa-
tion function is a non-linear transformation that has been tra-
ditionally used in neural networks. Typical activation fun-
ctions for CNN are recti�ed linear unit (ReLU) [16], leaky ReLU 
[17], and ELU [18].

After several convolutional and pooling layers, there may 
be one or more fully connected layers aiming to perform 
high-level reasoning [19]. Fully connected layers connect all 
previous layer's neurons with every neuron of the fully con-
nected layer. In this way, every extracted feature, which co-
mes with a speci�c weight, is processed independently, or in 
relation to the other features. The last layer of CNN is an out-

put layer. Softmax [20] operator is a conventional classi�er for 
CNN. The aim of the last layer is to classify the extracted 
features according to their relation with the desired outputs, 
called classes. 

Training CNN is a problem of global optimization. A loss 
function is used to evaluate the di�erence between the out-
put of a CNN and the desired label (i.e., the loss). Training is 
intended to achieve the minimization of the value of the loss 
function. Among many types of loss functions, the cross-en-
tropy loss, along with softmax output activations, are the 
most typically used for classi�cation tasks.

The CNN developed by virtual geometry group (VGG) 
for transfer learning
Instead of developing a new CNN architecture to train from 
scratch, which is the traditional pipeline in deep learning and 
its results depend highly on the size of the data provided, an 
alternative process called transfer learning was preferred. 
With transfer learning, it is possible to exploit the knowledge 
of a speci�c CNN, which was trained on a speci�c task, to ma-
ke predictions for another task. The CNN developed by the 
visual geometry group (VGG) [21] is widely utilized for me-
dical image classi�cation tasks. Thus, employing the VGG 
was preferred for the experiments of this work. 

During the process of pre-training, VGG has learned to ex-
tract speci�c characteristics from images assigning them 
constant weights. For our experiments, we retained some of 
those weights constant. The extracted features are connec-
ted to a classic neural network, which learns their signi�-
cance, based on the supplement of images to train the mo-
del. The evaluation of the classi�cation accuracy was perfor-
med with 10-fold cross-validation.

For the classi�cation task, we use transfer learning to ex-
ploit the capabilities of pre-trained networks. From the deri-
vatives of the main architecture of VGG, two CNN architec-
tures called VGG16 and VGG19 were selected. Both are na-
med after their number of total trainable weight layers, 
which are 16 and 19 accordingly. The number of the weight 
layers a�ects the depth of the network, and the feature ex-
traction steps. Since little di�erence between those two ar-
chitectures exists, it was preferable to utilize both. 

VGG16 
VGG16 was utilized by retaining some of the learned weights 
across its convolutional layers. At the top of the CNN, a global 
max pooling layer is added to reinforce the generalization ca-
pability of the network. The global max pooling aids to di-
mensionality reduction. The extracted features are connec-
ted to a fully connected layer of 500 nodes, followed by a dro-
pout layer, which randomly disconnects 50% of the learned 
features. The dropout layers are commonly used to prevent 
the CNN from learning too speci�c characteristics of the ima-
ges, by forcing the CNN to ignore randomly a proportion of 
the learned features.

Finally, another fully connected layer of 250 nodes is uti-
lized, also supported by a dropout layer. Adam optimizer and 
categorical cross-entropy loss are proposed to handle the 
learning rate and weight updates, as well as the calculation of 
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the loss. Adam optimizer and categorical cross-entropy loss 
are the default hyper parameters of the initial VGG, and it was 
preferable to retain them. An overview of the proposed 
VGG16 is presented in the Figure 1.

VGG19
To compare both VGG16, and VGG19, it was preferable to 
add the exact same neural network at the top of both CNN. 
VGG19 contains a sixth set of convolutional layers to further 
process the input image, while the remainder of its structure 
is the same with VGG16, as it is presented in Figure 1.   

The dataset of the study and data preprocessing
We utilized a collection of polar maps from 216 patient cases, 
from the database of the department of Nuclear Medicine of 
our hospital. Attenuation correction and NAC polar maps in 
stress and in rest condition were extracted from the SPECT 
scan in jpeg format. The AC and NAC images of stress and rest 
were rescaled to 150x150, to reduce the computational cost. 
The four polar maps corresponding to each case were conca-
tenated into one image. For training deep neural networks, 
large - scale datasets are necessary. Since the dataset for this 
experiment was not large enough to e�ectively train a deep 

CNN, data augmentation to generate new instances, was 
performed.

We created three di�erent datasets, named as AC, NAC, 
and ACNAC. The AC and NAC datasets contained two polar 
maps for each patient case (stress and rest condition), while 
the ACNAC dataset contained 4polar maps concatenated in-
to one image for each patient case.  

Data augmentation
For data augmentation, we simultaneously and slightly rota-
ted the polar maps (by a maximum of 45 degrees). The rota-
ted polar maps were then concatenated, thus generating 
new images. In this way, the CNN ignored slight spatial diver-
sity between the polar maps, and focused on the color varia-
tions, regardless of their relative position. During the aug-
mentation step, 1000 new images of both classes (dise-
ased/healthy) were generated and utilized for training. To ba-
lance the dataset, we generated more instances belonging 
to the no-CAD class. Thus, the training was performed with 
balanced data, despite the initial slight imbalance problem. 
Figure 2 presents the data preprocessing and data augmen-
tation steps related to the ACNAC dataset. The same proce-
dure was held for the AC and the NAC datasets.

Figure 1. The architecture of VGG16 for transfer learning.

Figure 2. The process of data augmentation. The extracted polar maps from each case are slightly and simultaneously rotated, to achieve diversity and to slightly expand 
the training dataset at each training step. 
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Evaluation procedure
Due to dataset scale limitations, 10-fold cross-validation was 
performed in order to achieve proper training and trustwor-
thy evaluation of the CNN. During this procedure, the initial 
dataset was split into ten parts, where the �rst nine parts we-
re the training set, while the tenth part remained hidden 
from the CNN for testing, which was held after the com-
pletion of the training. Before the training, the nine training 
folds were augmented, as explained. This procedure was re-
peated for the remaining folds, until every fold was selected 
for test set. Hence, the CNN underwent ten separate training 
processes and ten evaluations. The overall experiment setup 
is represented in Figure 3. 

Results

Based on the �ndings of coronary angiography, 152 patients 
(70.4%) were classi�ed in the �ow-limiting CAD, while the 
remaining 64 (29.6%) in the no-CAD group. The results of the 
CNN compared with the human expertise and the semi-qu-

antitative polar map analysis, in terms of accuracy, sensitivity, 
and speci�city for each dataset are presented in Table 2.

The semi-quantitative polar map analysis exhibited low di-
agnostic accuracy (64.2%-64.81%). More speci�cally, NAC 
showed low speci�city (46.88%), while AC low sensitivity 
(65.13%). Interpretation of MPI images by the medical sta� 
incorporated both NAC and AC �ndings in the �nal diag-
nosis, as well as all other relevant information from patients' 
history, resulting in higher accuracy (75%). 

The CNN model focused on the extraction of possibly sig-
ni�cant biomarkers from the polar maps only. The datasets 
containing only AC, or only NAC polar maps impeded the 
CNN from learning signi�cant information, which was re�ec-
ted on their evaluation metrics. Speci�cally, by separate NAC 
and AC data manipulation we observed a signi�cant drop in 
terms of accuracy (-16%). However, by combining NAC and 
AC polar maps in one image set (ACNAC), the CNN model 
managed to increase its diagnostic e�ciency, reaching va-
lues of sensitivity (75%), speci�city (73.44%) and accuracy 
(74.53%) which were not substantially di�erent from the ex-
perts' decision. In Table 3, the confusion matrices and some 
common machine learning metrics are provided. 
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Figure 3. Training and evaluation of VGG for the classi�cation task.

Table 2. Accuracy, Sensitivity, and Speci�city of the Networks, medical experts and semi-quantitative polar map analysis.

Datasets ACNAC AC     NAC

Model
ACC 
(%)

SEN 
(%)

SPE
 (%)

ACC
 (%)

SEN 
(%)

SPE 
(%)

ACC
 (%)

SEN 
(%)

SPE 
(%)

Experts 75.00 76.97 70.31 - - - - - -

Semi-Q (NAC) - - - - - - 64.81 72.37 46.88

Semi-Q (AC) - - - 66.20 65.13 68.75 - - -

VGG16 74.53 75.00 73.43 57.40 61.18 48.43 41.66 47.36 28.12

VGG19 74.53 75.00 73.43 51.85 57.89 28.12 58.33 62.50 48.43

Semi-Q: classical semi-quantitative polar map scoring; AC: attenuation correction; NAC: non-AC; ACNAC: AC-NAC combination; ACC: accuracy; SEN: 
sensitivity; SPE: speci�city; Medical experts did not evaluate NAC and AC studies separately.



To evaluate the transfer learning strategy, and the speci�c 
�ne-tuning strategy for the speci�c VGG architecture, we 
conducted another experiment. Firstly, we trained the VG-
G16 from scratch, i.e. without retaining its learned weights, 
which is considered the conventional training procedure. 
This model is referred to as VGG16-16. Secondly, we experi-
ment with altering the number and layout of the convolu-
tional layers we keep trainable and untrainable each time. 
This process can be considered as part of a process called 
�ne-tuning, and involves experimenting with the parame-
ters of the model to achieve the best possible result. Starting 
from the top of the network, we gradually adjust the convo-
lution blocks to be trainable. The di�erent modi�cations of 
the base VGG19 are named after the number of layers made 
trainable, that is VGG19-1, VGG19-4, VGG19-8, VGG19-12. 
Finally, we employ VGG for the classic feature extraction via 
transfer learning, where every layer is untrainable (VGG16-0). 
Table 4 presents the accuracy, sensitivity, and speci�city on 
the ACNAC dataset for each case.

The results demonstrate that the transfer learning strategy 
is preferable over the conventional training of CNN. This is 
proved by the low accuracy of VGG16-16 (43.05%). Besides, 
the performance of VGG16-0 (54.16%), which is the CNN 
used for classic feature extraction via transfer learning is con-
�rming that the �ne-tuning procedure is vital to tune the pa-
rameters of the CNN to obtain more accurate results. In the 
particular experiment, the optimal adjustment of the tra-
inable layers of the VGG16 network involved allowing 4 con-
volutional layers at the top of the network to be trainable. 

Discussion

Due to the shortage of large-scale publicly available datasets 
containing SPECT images for the detection of CAD, the appli-
cation of deep learning has not been thoroughly explored. 
Spier et al. (2019) [22] proposed a method for automatic clas-
si�cation of polar maps based on graph CNN. The proposed 
process was evaluated using 946 labeled datasets and com-
pared quantitatively to three other neural-network-based 
methods. The proposed model achieved an agreement with 
the human observer on 89.3% of rest test polar maps and on 
91.1% of stress test polar maps. Localization performed on a 
�ne 17-segment division of the polar maps achieved an agre-
ement of 83.1% with the human observer, while localization 
on a coarse 3-segment division based on the vessel beds of 
the left ventricle had an agreement of 78.8% with the human 
observer. Bentacur et al. (2019), [23] applied deep learning 
(DL) to combine upright and supine MPI polar maps automa-
tically and to predict obstructive CAD. The performance of 
DL was compared to the clinically established combined 
perfusion quanti�cation by upright and supine total perfu-
sion de�cit (TPD) using the rule of the concomitant location 
of the defect, and information, all unknown by DL and stan-

Table 3. Confusion matrices, precision and recall metrics.

Model         Actual values Precision
TP/(TP+FP)

Recall
TP/(TP+FN)

Experts CAD No-CAD

  Predicted CAD 117 (TP) 19 (FP) 86.03% 76.97%

  Predicted no CAD 35 (FN) 45 (TN)

Semi-Q analysis CAD No-CAD

  Predicted CAD (NAC ; AC) 110 ; 99 34 ; 20 76.39% 72.37%

  Predicted no CAD (NAC ; AC) 42 ; 53 30 ; 44 83.19% 65.13%

VGG16 and VGG19 CAD No CAD

  Predicted CAD 114 17 87.02% 75.00%

  Predicted no CAD 38 47

Table 4. Metrics of transfer learning and training from scratch 
strategies on the ACNAC dataset.

Model ACC (%) SEN (%) SPE (%)

VGG16-0 54.16 59.21 42.18

VGG16-1 55.55 58.55 48.43

VGG16-4 74.53 75.00 73.43

VGG16-8 62.03 61.84 62.50

VGG16-12 47.22 50.65 39.06

VGG16-16 43.05 49.34 28.12

ACC, SEN, SPE abbreviations as denoted in Table 2.
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dard clinical combined TPD (cTPD). The DL procedure lear-
ned image statistics from supine and upright maps and in-
tegrated them with sex information to compute a score for 
obstructive CAD outperforming cTPD prediction. The DL 
procedure was able to capture complex relationships that 
were not easily captured with the rule for upright and supine 
concomitancy. Seven hundred and eighteen (62%) patients 
and 1,272 of 3,480 (37%) arteries had obstructive disease. 
The area under the receiver operating characteristics curve 
for prediction of disease on a per-patient and per-vessel basis 
by DL was higher than for combined TPD (per-patient, 0.81 
vs. 0.78; per-vessel, 0.77 vs. 0.73; P<0.001). With the DL cut-o� 
set to exhibit the same speci�city as the standard cut-o� for 
combined TPD, per-patient sensitivity improved from 61.8% 
(TPD) to 65.6% (DL) (P<0.05), and per-vessel sensitivity im-
proved from 54.6% (TPD) to 59.1% (DL) (P<0.01). With the 
threshold matched to the speci�city of a normal clinical read 
(56.3%), DL had a sensitivity of 84.8%, versus 82.6% for an on-
site clinical read (P=0.3). 

The results of the current work highlight the capabilities of 
deep learning for medical image classi�cation tasks. On the 
speci�c dataset, blind VGG performed better than the con-
ventional semi-quantitative polar map scoring and compe-
ted with doctors' abilities, obtaining high accuracy (74.53%), 
compared to expertise e�ciency (75.00%). Moreover, it is 
highlighted that transfer learning, and more speci�cally, 
transfer learning via �ne-tuning, is an e�ective strategy for 
classi�cation of the speci�c images, capable of dealing with 
small datasets.

Limitations

Some limitations of the experiment have to be mentioned. 
First, the initial dataset is small impeding the generalization 
capabilities of the trained CNN. It is fair to assume that the fe-
atures learned by the CNN, are features extracted from the 
speci�c polar maps, and do not necessarily depict signi�cant 
factors that could be considered as biomarkers. This is a com-
mon issue of machine learning and deep learning face, espe-
cially when the datasets are small contain insigni�cant, or ir-
relevant relations between their attributes. The better accu-
racy obtained by the VGG does not suggest better know-
ledge from the medical sta�, due to its inability to generalize, 
and due to the high experience the medical sta� possess 
during the years. Secondly, the data augmentation method 
performed to circumvent the shortage of data is not robust 
enough to generate realistic images. Moreover, by rotating 
polar maps the site of abnormal �ndings was attributed to 
another territory of the left ventricular wall. However, in this 
work we examined the global diagnostic e�ciency of the 
method and not its ability to localize results to a speci�c coro-
nary vessel distribution. 

Despite the issues mentioned, it is undeniable that the 
results suggest that the automatic characterization of polar 
maps can be achieved in future works, assuming that larger 
datasets emerge. Also, prospective application of deep 

learning methods in everyday practice is a challenge and a 
future goal.

In conclusion, it is possible to classify a small dataset of MPI 
images at a level competing with experts' diagnostic ability 
with deep learning methods, employing transfer learning 
and data augmentation techniques. The proposed model 
can be easily and immediately deployed clinically for the eva-
luation of NAC and AC images. The value of the model could 
be two-fold: a) to support clinical diagnosis of CAD as an as-
sisting tool and b) to serve teaching purposes. In the future, 
more extensive MPI image databases are needed to con�rm 
our results. 
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