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Εnhancing contrast agents and radiotracers performance 

through hyaluronic acid-coating in neuroradiology and 

nuclear medicine

Abstract
The use of hyaluronic acid nanoshells has been proposed to encapsulate prodrugs and exploit the mec-
hanisms of interactions between living cells, like endocytes or cancer cells and hyaluronic acid, which is a 
natural component of the extracellular matrix. In this review we describe the potential and the limits of this 
promising research trend and discuss the theoretical advantages of such an engineering approach. Is it a 
possible scalability to increase the efficacy and biodegradability of molecules like contrast media and radio-
tracers especially for neuroradiology and nuclear medicine studies. 
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Introduction

One of the rapidly growing research �elds referring to conventional and high-Tes-
la magnetic resonance imaging (MRI) and nuclear medicine studies is the study 
of new contrast agents and radiotracers capable to early detect microaggre-

gates of cancer cells and cancer recurrence. Creation and development of solid tumors, 
of circulating tumor cells (CTC) and of early metastases may thus be a reality in the future

Interaction between hyaluronic acid nanoparticles and living cells
Since hyaluronic acid (HA) has immunoneutrality, others [2, 4] and we [3, 5], proposed it 
as a biocompatible and biodegradable material for tissue engineering and for the deve-
lopment of delivery of various drug systems. Recently, formulations of several drugs or 
prodrugs conjugated to polymeric coated HA nanoparticles of poly(ε-coprolactone), 
polylactide, poly(lactic-co-glycolic acid), polyethylene-glycol, polycarylates and chito-
san were found effective as smart delivery systems both in vitro and in vivo [5-9]. 

Hyaluronic acid is a natural linear polysaccharide constituted by repeating units of N-
acetyl-D-glucosamine and D-glucuronic acid with monosaccharides and linked 
together by alternating β-1,3 and β-1,4 glycosidic bonds. The carboxyl groups of HA are 
predominantly ionized at pH 7.4 and therefore in physiological conditions, HA appears 
as a polyanion, known as hyaluronan [10]. Hyaluronic acid is found in a wide range of 
molecular weights ranging from 20kDa of the HA oligomers (o-HA), to the high-mole-
cular weight (HMW) of bulk HA (~1.5MDa). In solution, the chains of HA adopt a random 
coil conformation, and its high hydrophilic nature leads to multiple hydrogen bonds 
with H O, explaining the viscous and elastic characteristics of the connective tissues in 2

which this polysaccharide is abundant. Besides chemical conjugation, it has been 
proved that HA can also be linked to other prodrugs or to proper delivery systems by 
weak interactions such as those involved in the formation of ion pairs [11, 12] expanding 
the number of possible candidates for conjugation with or encapsulation within those 
nanocarriers. 

Hyaluronic acid conjugates could leverage on their propensity to overcome the blood 
brain barrier (BBB), so that �rst to produce biologic effects on the central nervous system 
(CNS) and secondly to provide a speci�c tumor targeting activity, which takes advan-
tage of the peculiar interaction between HA receptors on the bilipidic membrane of 
glioma cells and the enzymes for HA degradation contained in the extracellular matrix 
(ECM). The �rst, is mainly based on receptor-mediated endocytosis of HA nanoparticles 
at the level of brain capillary endothelial cells [13]. The second, represents the basis for 
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the matrix metalloproteinases (MMP)-triggered release of 
contrast agents in proximity to cancer cells aggregates [14, 
15]. So, HA can be useful in neuroradiology and neuronco-
logy.( Figure 1. Artistic representation of a CD44 transmem-
brane receptor).

Figure 1. Artistic representation of a CD44 transmembrane receptor.

Technical advancements, potentials and limits in ne-
uroradiology
As anticipated above, HA nanoparticles as carriers for anti-
neoplastic drugs hold the potential for an innovative, high 
throughput therapeutic approach in neuro-oncological 
chemotherapy protocols. They are used as innovative nano-
carriers in order to provide stability and tolerance to mole-
cules of contrast agents for MRI and other applications. 

Hyaluronic acid seems to be used with complex manga-
nese oxide nanoparticles (chemical formula: manganium 
oxide (Mn O ), Molar mass 228.812g/moL) with potential for 3 4

selective accumulation within high grade gliomas. 
The use of targeted tumor MRI in vivo has been so far mos-

tly tested with polyethylene-glycol. Luo et al. (1999) conju-
gated Mn O  with polyethylene-glycol creating nanopartic-3 4

les of a mean diameter of 8.0nm and characterized by a 
good water-dispersibility, colloidal stability, cyto-compati-
bility and hemo-compatibility [16]. 

Chen et al. (2015) further investigated the applicability of 
MnO-polyethylene-glycol nanoparticles conjugated with 
�uorescent dye cyanine5.5 as a dual-model imaging nano-
probe for MRI and for near infrared �uorescence. The dual 
potential imaging role of those nanoparticles was tested 
conducting experiments on the detection of brain gliomas 
in mice, showing both in vivo and ex vivo a preferential accu-
mulation of those nanoprobes in the region of tumor cells 
[17].

Initial studies on HA nanoparticles are ruling out many of 
the concerns related not only to drug tolerance, but also 
those related to the risk of cytotoxicity and genotoxicity 
which have strongly affected the clinical testing of other 
drugs with a previously unremarkable laboratory track [18]. 
For instance, encouraging results in terms of cytotoxicity 
came from tests conducted on engineered nanoparticles 

synthesized by the encapsulation of polyethylene-glycol 
phospholipid shell around the Mn O  core. By quantifying 3 4

the induction of reactive oxygen species in human glioblas-
toma and neuroblastoma cell lines, Choi et al. (2015) demon-
strated that the cytotoxicity of these nanoparticles were not 
signi�cant and con�rmed their high potential as an innova-
tive diagnostic tool in CNS tumors [19].

Externalities of HA nanoparticles in Nuclear Medicine 
Due to the extraordinary high sensitivity (down to the pico-
molar level of HA) and to its quantitative nature, radionuc-
lide-based imaging is considered a standard modality for 
molecular imaging, although burdened by the poor reso-
lution (≈5mm) of both proton emission tomography (PET) 
and single photon emission tomography (SPET) [20]. Accor-
ding to Lopci et al. (2015), in selected neuro-oncological 
cases, the use of PET scans can determine a change in treat-
ment management in up to 50% of the cases, and these per-
formances have further supported the optimization of kno-
wn tracers or the identi�cation of new ones [21]. A major 
challenge in the �eld of nuclear medicine is, for example, to 
develop disease speci�c nanoprobes with facile and robust 
radiolabeling strategies for gliomas. The characteristics ne-
eded are: imaging stability, improved targeting for elevated 
efficacy, enhanced sensitivity to detect tumors in their early 
stages, optimized in vivo pharmacokinetics for reduced non-
speci�c organs uptake and reduced toxicity. As such, scien-
tists have tried to understand whether the process of HA-
coating could be of help in meeting those needs. (Figure 2. 
Structure of HA and its targets for chemical modi�cation)

Figure 2. Structure of HA and its targets for chemical modi�cation.

Over the past decade, several positron emitting labeled 
nanoparticles were developed and substantially improved 
to meet the diagnostic needs of a wide range of pathological 
conditions, including in�ammatory and oncology ones. 
Speci�cally, the rationale behind the attempts to encapsu-
late radiotracers within HA nanoshells is to leverage on the 
elective interaction with CD44 and speci�cally increase the 
vehiculation within the CNS, while reducing the accumu-
lation elsewhere, and favoring their release in the ECM adja-
cent to glioma cells. Initial experiments to label HA with 

14indium-11, iodine-125, technetium-99m or carbon-14 ( C) 
radionuclides date back to the end of last decade [29, 30]. 
Cozikova et al. (2010) tested in a laboratory setting different 

Short Review Article

9
93 Hellenic Journal of Nuclear Medicine     May-August 2017•   www.nuclmed.gr167



methods for the labeling of HA with routinely used radio-
nuclides aiming to compare the kinetic stability of radiola-
beled HA under different conditions (i.e. to mimic the inte-
raction with saline �uids, gastric juice and plasma following 
intravenous or oral administration); they concluded that the 
most suitable labeling method may vary from one radionu-
clide to another, and depends on the speci�c characteristics 
of the radiotracer tested.

To date, the main limitation to the HA-coating process has 
been that the decay of the radiotracers mentioned above is 
comprised between few minutes and 1 hour, although pre-

99vious experiments with Tc-labeled HA and �uorodeoxyglu-
cose-radiolabeled long-circulating polyethylene-glycol-
coated liposomes showed that they could remain in blood 
circulation at near constant levels for at least 90 minutes [30, 
31]. It is well known that the selection of appropriate radio-
nuclides depends on their imaging characteristics, decay 
half-life, chelating properties, chemistry and availability; for 
this, the radionuclides selected more recently for conju-
gation with nanoparticles, such as cuprum-64, bromium-76, 
zirconium-89 and others who are characterized by longer 
half-lifes [32, 33]. 

At present, despite the enthusiasms around HA-coated 
radiotracers, no one has gone beyond phase II in clinical tri-
als; despite their clinical use is not imminent further inves-
tigations are certainly warranted. 

In conclusion, the pace of effective translation from bench 
to bedside of the latest basic science achievements des-
cribed in this short review article is meant to accelerate even 
further in the next decade, this will most likely lead to an 
optimization of the diagnostic tools available for those pat-
hologies, and will potentially support a shift towards perso-
nalized medicine for our patients.
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