## Stage IE non-Hodgkin's thyroid lymphoma on <sup>18</sup>F-FDG-PET/CT

To the Editor: A 79 years old woman with history of hypothyroidism and breast cancer, status post bilateral segmental mastectomies and radiation treatment, presented to us with a left-sided painless thyroid nodule. Thyroid ultrasound demonstrated a hypoechoic solid-appearing left thyroid nodule suspicious for malignancy. Subsequent biopsy revealed high-grade B-cell lymphoma. Whole body PET/ computed tomography (CT) was performed for initial staging which showed isolated intense uptake in the left hemith-yroid and isthmus with max SUV 39.4, correlating with the high-grade histology in this patient. However, no nodal or other extranodal involvement could be identified, qualifying this as stage IE non-Hodgkin's lymphoma (Fig. 1).

Primary non-Hodgkin's lymphoma of the thyroid is an uncommon malignancy in adults, accounting for only 2%-5% of all thyroid neoplasms and 2.5%-7% of all extranodal lymphomas [1-4]. These lymphomas tend to arise in middle-aged and elderly women, ages 50 to 80 with a peak incidence at 60 years of age [5, 6]. They typically (94%) occur in the setting of lymphocytic thyroiditis, shown to confer a



40 to 80 times risk relative to that of the general population [3, 6-8]. Diagnosis is made by biopsy, flow cytometery, and immunohistochemistry. The vast majority of cases reveal intermediate-grade histology [4].

Stage IE is designated when lymphoma exhibits a single isolated extranodal manifestation ('E' for 'extranodal'). This accounts for approximately 50% of primary non-Hodgkin's lymphomas of the thyroid [5]. Stage IE lymphoma generally portends an excellent prognosis, with reported survival rates ranging from 76%-100% [1, 5, 6].

In the last decade, fluorine-18 fluorodesoxyglucose-positron emission tomography (18F-FDG-PET) has emerged as a major advance in the detection of disease activity and the diagnosis of lymphomas. Further, its specific value in cases of primary thyroid lymphoma has recently been demonstrated, both in diagnosis and in monitoring of treatment response [9, 10]. Accurate staging of non-Hodgkin's lymphoma has a drastic impact on prognosis as well as treatment strategy, which can range from surgical excision to chemotherapy and radiation. In the case of newly found thyroid lymphoma, PET/computed tomography-CT provides a whole-body approach with great sensitivity. Thus, this modality confers a high level of diagnostic confidence, superior to regional imaging modalities such as CT and magnetic resonance imaging (MRI), in ruling out other sites of malignancy in the case of stage IE lymphoma.

*In conclusion*, due to high sensitivity in lesional detection, <sup>18</sup>F-FDG-PET/CT was able to support diagnosis of thyroid lymphoma stage IE enabling the physician towards a less aggressive approach in treatment.



**Figure 1. (A)** Axial fused PET/ CT, **(B)** axial CT, **(C)** axial PET, and **(D)** maximum intensity projection (MIP) whole body image of the patient. PET/CT imaging definitively rules out extrathyroidal disease, confirming the rare diagnosis of stage IE lymphoma localized in the thyroid.



All authors declare that they have no conflicts of interest Holm LE, Blomgren H, Lowhagen T. Cancer risks in patients 8. with chronic lymphocytic thyroiditis. N Engl J Med 1985; 312(10): 601-4. **Bibliography** 9. Basu S, Li G, Bural G, Alavi A. Fluorodeoxyglucose positron emission tomography (FDG-PET) and PET/computed tomog-Freeman C, Berg JW, Cutler SJ. Occurrence and prognosis of raphy imaging characteristics of thyroid lymphoma and their 1. extranodal lymphomas. Cancer 1972; 29(1): 252-60. potential clinical utility. Acta Radiol 2009; 50(2): 201-4. Staunton MD, Greening WP. Clinical diagnosis of thyroid can-2. 10. Lin EC. FDG PET/CT for assessing therapy response in primary cer. Br Med J 1973; 4(5891): 532-5. thyroid lymphoma. Clin Nucl Med 2007; 32(2): 152-3. 3. Pedersen RK, Pedersen NT. Primary non-Hodgkin's lymphoma of the thyroid gland: a population based study. Histopathology Amar Mehta BS, Ashok Muthukrishnan MD 1996; 28(1): 25-32. 4. DiBiase SJ, Grigsby PW, Guo C et al. Outcome analysis for stage IE Department of Radiology, University of Pittsburgh, Pennsylvania and IIE thyroid lymphoma. Am J Clin Oncol 2004; 27(2): 178-84. Ashok Muthukrishnan MD, MS 5. Widder S, Pasieka JL. Primary thyroid lymphomas. Curr Treat Options Oncol 2004; 5(4): 307-13. Division of Nuclear Medicine, UPMC Radiology 200 Lothrop St, Pittsburgh, PA 15213, Derringer GA, Thompson LD, Frommelt RA et al. Malignant Tel: (412) 647-0104, Fax: (412) 647-2601, E-mail: muthukrishnana@upmc.edu 6. lymphoma of the thyroid gland: a clinicopathologic study of 108 cases. Am J Surg Pathol 2000; 24(5): 623-39. Hell J Nucl Med 2011:14(2): Published on line: 16 June 2011 7. Kato I, Tajima K, Suchi T et al. Chronic thyroiditis as a risk factor of B-cell lymphoma in the thyroid gland. Jpn J Cancer Res 1985; 76(11): 1085-90.

▲