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Abstract
Spatial statistics is widely used in fields where analysis of large-scale distributions is performed, such 
as synoptic meteorology and geostatistics. We constructed a smoothing function as part of a funda-
mental study aimed at introducing spatial statistics to the Z score map of cerebral blood flow-single 
photon emission tomography (CBF-SPET) and examined the applicability of spatial statistics to CBF-
SPET imaging. The free statistical processing language R was chosen as the development language, 
and the smoothing function was constructed by use of a kernel function, a thin-plate spline function, 
and the Bayesian method. A Gaussian function was used as the kernel function, and three values for 
the smoothing parameters (0.25, 0.5, standard deviation (SD)) were used. Furthermore, the smooth-
ing parameters of the thin-plate spline function were estimated by use of generalized cross valida-
tion (GCV), the Gibbs sampling method was adopted for the Bayesian method, and the number of it-
erations and the value for the burn-in were set to 500 and 250, respectively. In performing the visual 
assessment of the source image and the smoothed image, there were no differences caused by the 
smoothing process. However, there were discrepancies in the contour map at each step of the 
smoothing iteration. Comparing the residual sum of squares of the source image and the resulting 
image after each smoothing iteration, the minimum and maximum values for the image after 
processing with a kernel function were 1.329×10-11 and 21.96 when the smoothing parameters were 
0.25 and SD, respectively. The smoothing function, which was examined for the purpose of applying 
the spatial statistical method to CBF-SPET imaging, successfully performed a smoothing without 
generating visible discrepancies when compared with the source image. In conclusion, our research 
showed that spatial statistics as performed by us is applicable as an analytical method for better cer-
ebral blood flow-SPET imaging.
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Introduction

I mage analysis techniques in the diagnosis of dementia are advancing rapidly, and 
magnetic resonance imaging (MRI) and cerebral blood flow-single photon emission to-
mography (CBF-SPET), as well as 18Fluorine-fluorodeoxyglucose positron emission 

tomography (18F-FDG-PET), are important instruments for early diagnosis of dementia. 
Regarding diagnostic techniques based on imaging, which are used for extracting 
information from the obtained images, it is necessary to construct analytical methods, 
which can be used for attaining higher sensitivity and specificity and for improving the 
predictability of the development of clinical conditions.
 In the CBF-SPET imaging analysis method for Alzheimer’s disease (AD), it is possible to 
verify in the early disease stages whether there is decreased blood flow in the posterior cin-
gulate gyrus precuneus by using a normalcy database for comparison. These methods have 
been clarified through objective evaluation of the Z score by performance of statistical 
processing of the normalcy database and of clinical cases [1-5]. Three methods (statistical 
parametric mapping; SPM, three-dimensional stereotactic surface projection; 3D-SSP, and 
easy Z score imaging system; eZIS) are conventionally accepted as representative [6-13]. The 
relevant literature also states that the quantitative evaluation of CBF-SPET is important in di-
agnosing dementia. Therefore, in the present study, we focused on the Z score map for CBF-
SPET. We applied spatial statistics as used in synoptic meteorology and geostatistics to the Z 
score map, which can be expressed as a typical aberration area in the CBF as seen with CBF-
SPET, after which we examined the smoothing function necessary for performing spatial 
statistic analysis of the distribution in the aberrant area and explored its applicability to CBF-
SPET imaging.
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Here,  λ  is the smoothing parameter, and it determines the 
size of the neighboring region. If the concentration of each 
point is taken as the Z score map, and if the smoothing is 
performed with a kernel function, it is possible to estimate 
the Nadaraya-Watson weight of each point by use of  

^
f   λ(X). In 

this case,  dij  is the  Z  score (the concentration) of each point, 
where  i  and  j  represent the pixel numbers in the direction of 
the  x  and  y  axes, respectively. And  m  and  n  represent the 
pixel size of each image.
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Apart from the choice of the kernel function, the setting of 
the smoothing parameter also exerts an influence on the im-
age. In this research, the smoothing parameter was taken as 
0.25, 0.5, or the standard deviation (SD) of the source image.

Thin-plate spline function

The thin-plate spline function was designed by Duchon [22]. 
The observed concentration  yij  is assumed to be the sum of 
the estimated value  fij  and the error  εij. Therefore, the con-
centration for each point is estimated through appropriate 
cross-validation such that the thin-plane spline function  S(yij) 
becomes smallest.

    yij = fij + εij       i = 1, 2, Λ, m       j = 1, 2, Λ, n (3)
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 In the case of cross-validation, a thin-plate spline func-
tion  S(k,l)(yij) is considered where the k and l values are re-
moved:
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 We calculate the minimum value  f(fλ
(k,l))  of this  S(k,l)(yij). In 

this case, λ is taken as the minimum value of the ordinary 
cross-validation function V0(λ):

    V mn d f1l ij ij

nm

j
j l

i
i k

0
2

11
= -

!!

==

^ _h i//  (6)

 Here, we considered the generalized cross-validation 
function  Τ(λ), which is a generalized version of the ordinary 
cross-validation function, and λ is the estimated squared error:
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λ  can be calculated as the value, which minimizes  Τ(λ). In the 
present research,  λ  is  9.1 × 10–6.

Bayesian method

It is assumed that the concentration  dij  of each point is a sum 

Equipment and methods

Preparation of the imaging data

The clinical data were chosen at random from outpatients 
who were examined at a neurological clinic, and among the 
patients who received a CBF-SPET examination, the consent 
of a 67 years old female patient with her family was obtained 
with regard to using the technetium-99m ethyl cysteinate 
dimmer (99mTc-ECD; Fujifulm RI Pharma Co., LTD., Tokyo, Ja-
pan) CBF-SPET images for research purposes. The equipment 
used was Prism3000XP (Shimadzu Medical Systems Corpora-
tion, Kyoto, Japan) and a low-energy high-resolution fan 
beam collimator. The patient was lying face up with eyes 
closed inside the test device, and 600MBq 99mTc-ECD were 
administered intravenously. The patient was allowed to open 
her eyes after 10min of lying still, and the examination was 
performed 20min after the administration of 99mTc-ECD. The 
examination room was dim, and the silence was kept under 
the examination. The conditions regarding the collection of 
data are shown in Table 1. Using iSSP (Nihon Medi-Physics Co., 
LTD., Tokyo, Japan), which is an interface program to 3D-SSP, 
together with the obtained CBF-SPET image, we acquired the 
Z score map as compared with the normalcy database. The Z 
score of the plane of the right brain surface was outputted as 
text data. The depth coordinate of the data was reduced by 1, 
and the Z score map as converted to two dimensions was 
used as the source image. This source image was smoothed 
in accordance with the theory described below, and the re-
sult was taken as the smoothed image.

Table 1. CBF-SPET examination protocol

Matrix size 128x128 (3.67mm/pixel)

Acquisition mode continuous

Acquisition angle 120 deg.x3 (3deg/step)

Acquisition time 20min (30sec/step)

Attenuation correction Chang’s method (0.13cm-1)

Scatter correction none

Radiopharmacy 99mTc-ECD

Injection dose 600MBq/3ml

99mTc-ECD: technetium-99m ethyl cysteinate dimmer

Theory behind the smoothing process

Among the smoothing functions widely used in spatial statistics, 
three functions, which were regarded as suitable for the 
purposes of the research were utilized for constructing three 
different theories. The theories are presented below [14-21].

Kernel function

For the purpose of determining the degree of similarity be-
tween the source and the smoothed images, the Gaussian 
function is most widely used as a kernel function. Consider-
ing a point X and its neighboring points Xi , the Gaussian ker-
nel K is expressed as follows:

    .expK X X
X X
li

i- = -
-

^ h < F  (1)
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 For the purpose of simplifying the computation, we se-
lected the plane of the right brain surface among the 8 direc-
tions in which the  Z  score map is prepared, which was subse-
quently converted into text data. From the  x, y  and  z  axes, 
the axis corresponding to the depth direction was removed, 
and the smoothing was performed with respect to the plane 
formed by the  x  and  y  axes. The programming for these op-
erations was implemented by use of the free statistical pro-
gramming language  R. The text data corresponding to the 
source image and the smoothed image were converted back 
to graphics, after which the changes in the area of the  Z  score 
were evaluated visually by use of a contour map. Further-
more, as an objective evaluation, the residual sum of squares 
(RSS) for the source image was calculated.

Results
The source image and the smoothed image represented as 
two-dimensional data converted back to graphics are shown 
in Figure 1. The value of SD in this case was 0.84. Although 
subtle differences appear along the periphery of the 
smoothed image, it is clear that there are virtually no visual 
differences between the smoothed image and the source 
one. Figure 2 presents the contour maps of the images in Fig-
ure 1. Following the increase in the value of the parameter, 
the contour lines became denser in the image smoothed with 
the kernel function (Figs. 2a, 2b and 2c), and the densest dis-
tribution was obtained for the image smoothed with the thin-
plane spline function shown in (Fig. 2d). Although the con-
tour lines for the brain surface of source image shown in (Fig. 
2f) was similar to the image shown in (Fig. 2e) for the Bayesian 
method, the distribution corresponding to the space outside 
the brain surface (background) was considered to be affected 
by noise. The images resulting from the fusion of the images 
in Figures 1 and 2 are shown in Figure 3. In all cases, the shad-
ed areas in the images mostly coincided with the contour 
lines upon visual examination. However, as a common feature 

of the error εij and the concentration  yij .

   yij = dij + εij       i = 1, 2, Λ, m       j = 1, 2, Λ, n (8)

According to the theory presented by Bayes, the posterior 
probability is written as follows. Where,  y  is the concentration 
of the source image,  θ  is the model parameter, and  f(θ)  is the 
posterior probability:
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 From this, by use of the estimated maximum posterior 
probability, the model parameter θ for which the posterior 
probability is maximized can be estimated through the 
relation f(θ|y) ∞ f(y|θ)f(θ). Furthermore, there are necessary 
assumptions regarding the posterior probability, and the 
present data were considered to follow a normal distribution 
in accordance with the following equation:
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Where,  μij  and  σij
2  are the mean value and the distribution 

of  dij , respectively. Furthermore, although it is generally 
possible to express the noninformative prior distribution by 
using the Gamma function with the parameter set to a low 
value, in this case the parameter was set to 0.0001, as shown 
in the following formula:

    

. , .

. , .

Gamma

Gamma

1 0 0001 0 0001

1 0 0001 0 0001

s

s

ij
2

2

=

=

]

]

g

g

 (12)

However, because it is impossible to calculate the denomina-
tor in Eq. (9) analytically, we applied the Gibbs sampling 
method to the computation, which follows a Markov-chain 
Monte Carlo method. The algorithm of the Gibbs sampling 
method involves the selection of an initial value  θ0, after 
which a sampling process is iterated a finite number of times 
by taking  θ0  as the starting point, and a sample  θ  is con-
structed. One sample is extracted at the t+1 stage after t re-
cursive computations are performed, this process is repeated 
the same number of times as the number of variables, and 
the  t + 1st  sample group is obtained. The joint probability is 
obtained from the above, and it is applied to the denomina-
tor in Eq. (9).

Data processing

The SPET data were prepared as transverse images in a rou-
tine examination. The images were transferred to a PC, after 
which a  Z  score map was prepared with iSSP. The database at 
Chiba University, which was prepared with the same equip-
ment as that used in the present research, was used as the 
normalcy database necessary for preparing the  Z  score map. 

Figure 1. CBF-SPET Z score maps of the source image and the smoothed 
images. (a)-(c) correspond to the image smoothed with the kernel func-
tion, where the parameter values are 0.25, 0.5, and the standard deviation 
(SD), respectively. (d) corresponds to the thin-plane spline function, (e) 
corresponds to the Bayesian method, and (f) is the source image.
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and a detailed, smoother distribution of results can be ex-
pected [23]. As such, the Bayesian method parameters are 
theoretically calculable from the estimated maximum poste-
rior probability and these are the most popular methods, 
which apply several natural phenomena [14].
 The smoothing function used this time had no visual in-
fluence in any of the cases. However, since the compactness 
of the contour lines varied due to smoothing function, the de-
gree of correlation of near points differed. Even though the 
kernel function method is simple, the density of contour lines 
varies due to the unreliable method for determining parame-
ters, and is consequently considered difficult to put forward 
as a theoretical method. The density of contour lines in the 
thin-plate spline function becomes too high, which could 
make analyzing the lesion distribution from poor quality nu-
clear medicine images complex, and thus a more detailed ex-
amination of assessment methods is necessary after being 
handled by a smoothing function. Observational assessment 
of the lesion region in the Bayesian method do not differ 
much, so parameter fixing through the estimated maximum 
posterior probability is theoretically possible and is consid-
ered most applicable to nuclear medicine examinations such 
as CBF-SPET. A report by Besagg gives an example of an anal-
ysis using the Bayesian method with a planar Gamma-ray 
camera image, which provides a lesion profile curve from the 
differences in parameters [24]. Expanding the profile curve in 
2-D is considered sufficient to apply it to the SPET region in 
spatial statistics.
 There were limitations to this investigation. One was that 
the boundary between the brain surface and background 
was not distinguishable since the background was not ex-
cluded from the calculation. From the outset, the smoothing 
function tends to blur the margins. Therefore, it is necessary 
to examine a method of handling the boundary limit sepa-
rately. Another limitation, which also depends on computer 
capabilities, is that as the calculation time for the Bayesian 
method took about an hour, consequently a consideration of 
high speed operations is necessary, as are further investiga-

shared by all images, the background was smoothed as 
space, which was continuous with the brain surface. The pa-
rameters of the smoothed images corresponding to the 
source image, as well as the computational results for the re-
sidual sum of squares, are shown in Table 2. 

Table 2.  Parameters and the residual sum of squares of the 
smoothed images corresponding to the source image

Smoothing function
Smoothing  
parameter

Residual sum square

Kernel function (0.25) 0.25 1.329 ̈́  10-11

Kernel function (0.50) 0.50 0.3182

Kernel function (SD) 0.84 21.96

Thin plate spline function 9.1 ̈́  10-6 5.843

Bayesian method – 2.677

SD: standard deviation

Discussion
Spatial statistics, applied to synoptic meteorology analysis, is 
considered applicable to lesion distribution pattern analysis 
or quantitative analysis of the region by replacing the surface 
of the brain with a spherical surface. iSSP, a CBF-SPET analysis 
method, is considered easily applicable to spatial statistics 
since it projects a  Z  score onto the brain surface, and is con-
sequently used as the source data this time. The smoothing 
function essential for a spatial statistics approach is necessary 
for obtaining a correlation of points in the vicinity of the brain 
surface and also has the strongest effects on the results. The 
absolute conditions fixing the smoothing function are that 
the data handled by the smoothing function must not show 
a visual change. The concern with visual changes is that diag-
nosis could be adversely affected. Here, 3 smoothing func-
tions were chosen as being suitable for this study for the fol-
lowing reason. Using a Gaussian kernel function is a basic sta-
tistical concept and a fundamental method. The thin-plate 
spline function applies a conversion from 3-D to 2-D, making 
linear calculations possible by determining these parameters, 

Figure 2. Contour maps of the source image and the smoothed images. 
The arrangement of (a)-(f) is the same as that in Figure 1.

Figure 3. Images resulting from the fusion of the CBF-SPET Z score maps 
with the contour maps. The arrangement of (a)-(f) is the same as that in 
Figures 1 and 2.
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tions into its practical use. In addition, each RSS value is ex-
cluded when SD is performed on the kernel function param-
eters to give a sufficiently low value; however, if it were ex-
cluded from the background handling calculation, it could 
yield a more accurate assessment. Based on the above, ap-
proaching CBF-SPET from a spatial statistical analysis, the 
Bayesian method is likely to be optimal for the necessary 
smoothing function.
 From the cases chosen as the target of this research, there 
was only one example of a case with areas of significant re-
duction in blood flow, which was in the lower region of the 
right temporal lobe. Thus, many similar cases need to be ac-
cumulated in order to compare pathogenesis. If the mean val-
ues and dispersion of the Z score distribution in similar patho-
genic cases are obtained, probabilistic diagnostic results are 
likely to be possible from the pathogenesis distribution. Here-
after, we plan to address the limitations of this research and 
to conduct clinical evaluations.
 CBF-SPET is a useful technique for the early detection of 
dementia. In addition to increasing the accuracy of the exam-
ination or the prognosis of the disease stage, it is necessary to 
construct image-analysis techniques with higher degrees of 
objectivity. Although the calculation of Z score maps is a 
method of superior objectivity, it involves voxel-by-voxel 
analysis and does not consider the area of the disease. In or-
der to show the areas specific to dementia and change them 
in accordance with the stage of the disease, one should eval-
uate the changes in the area in a time-series manner. Such an 
evaluation method coincides with the way of thinking of spa-
tial statistics. It was found that the smoothing functions con-
sidered in this research are capable of processing the source 
image in such a way that there are no visible changes in Z 
score maps, and it is possible to take an approach based on 
spatial statistics.
 In conclusion, we found that the smoothing functions 
considered in this research are capable to increasing the 
accuracy of the CBF-SPET examination for the early detection 
of dementia or for the prognosis of the disease stage.
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