
Appropriately regularized OSEM can improve 
the reconstructed PET images of data 
with low count statistics

Abstract
Objective: With the increasing number of patients undergoing positron emission tomography (PET) scans
and the fact that multiple whole body acquisitions are performed during therapy monitoring, the reduc-
tion of scan time as well as of the injected radioactive dose are important issues. However, short scan time
and reduction of the injected radiation dose result in low count statistics, which significantly affects the
quality of the reconstructed images and accurate diagnosis. The aim of this study was to explore the effect
of low count statistics on ordered subset expectation maximization regularized with median root prior
(OS-MRP-OSL) reconstructed images. Methods: By optimizing OS-MRP-OSL we determined whether a
satisfactory handling of the noise properties and bias can be achieved compared to post-filtered ordered
subset expectation maximization (OSEM), which will lead to improved image quality in simulations with
more noise. We used realistic simulated PET data of a thorax with lesions corresponding to tumors with
different intensities. Results: OS-MRP-OSL provided reduced noise from post-filtered OSEM, without hav-
ing the negative effect of blurring. On the other hand, bias presented no significant difference. Conclusion:
This work is relevant to future PET reconstruction of clinical images and PET-magnetic resonance investi-
gations where the reduced injected dose will allow imaging a larger cohort of humans.  
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Introduction

Positron emission tomography (PET) images give physiological and metabolic in-
formation based on the distribution of radiotracers inside the body of the patient.
Quantitative and semi-quantitative information can be obtained to help the di-

agnosis and characterize various abnormalities such as cancerous lesions [1-4]. Positron
emission tomography images are highly affected with noise and the use of iterative
image reconstruction can provide images with reasonable image quality. Nevertheless,
several iterations are required to obtain accurate value particularly for small regions with
relatively low uptake. However, the iteratively reconstructed images are substantially af-
fected by noise after a large number of iterations and image quality is severely degraded.
In order to optimise both quantitative accuracy and image quality regularized iterative
reconstruction algorithms have been proposed in the literature. These algorithms offer
better results than only filtering the images reconstructed with existing commercial al-
gorithms. Regularized iterative reconstruction methods are now implemented incom-
mercial systems (e.g. Q. Clear™ software marketed by GE Healthcare). The images
obtained with regularized reconstruction algorithms will potentially help the nuclear
medicine physicians to diagnose with higher accuracy plausible pathological conditions. 

Further than this, the increasing number of patients undergoing PET scans and the
fact that multiple whole body acquisitions are performed during therapy monitoring,
the reduction of scan time as well as of the injected radioactive dose are important is-
sues. Short scan times can increase the patient throughput giving the opportunity to
busy centres to scan more patients every day and the possibility of performing inter-
scans to follow-up treatment. Furthermore, shorter in time acquisitions are less affected
by motion artefacts and may even boost the use of radiotracers with shorter half-life.
The reduction of the injected dose can be translated to reduced patient and staff ex-
posure to radioactivity. Moreover, it will be greatly beneficial for cases where low
amount of injected dose is crucial. However, short scan time and reduction of injected
radiation dose result in low count statistics [5, 6].

Konstantinos Karaoglanis1,2 MSc,
Irene Polycarpou1,3 PhD, 
Nikos Efthimiou4,5 PhD,
Charalampos Tsoumpas1,5,6 PhD

1. Dept. of Biomedical Engineering,
Division of Imaging Sciences and
Biomedical Engineering, Kings 
College London, United Kingdom
2. Dept. of Biomedical Technology,
Biomedical Research Foundation 
of the Academy of Athens, Greece
3. School of Sciences, Nicosia, 
European University of Cyprus
4. Dept. of Biomedical Engineering,
Technological Educational Institute
of Athens, Greece
5. Division of Biomedical Imaging,
University of Leeds, United Kingdom
6. Translational and Molecular 
Imaging Institute and Dept. 
of Radiology, Icahn School 
of Medicine at Mount Sinai, 
New York, USA

Keywords: PET simulated data, 
- Low statistic counts, 
- Regularized OSEM, 
- Less noise, 
- Reduced injected dose

Correspondence address: 
Charalampos Tsoumpas, PhD, 
8.001a, Worsley Building, 
Clarendon Way, University 
of Leeds, Leeds, LS2 9JT, 
West Yorkshire, United Kingdom
C.Tsoumpas@leeds.ac.uk

Received:
5 May 2015

Accepted:
20 June 2015

Original Technical Article

140 Hellenic Journal of Nuclear Medicine •   May - August 2015 www.nuclmed.gr



Original Technical Article

141Hellenic Journal of Nuclear Medicine •   May - August 2015www.nuclmed.gr

Consequently, the reconstructed images present even
higher increased bias and are prone to high noise that could
affect the tumour detectability and accuracy of classification
[7-10]. Previous studies demonstrated the benefits in image
quality by using smoothing filters or advanced reconstruc-
tion algorithms including regularization [11-13].

Other researchers [14, 15] have used two algorithms; the
first was a negative maximum likelihood algorithm (NEG-ML)
[16] and the second was an OSEM using upper and lower
bounds for the image values (AB)-OSEM, which removes the
non-negativity constraint in the reconstructed images, in
order to deal with the increasing bias which is observed in
OSEM [17]. They showed that AB-OSEM outperforms NEG-
ML and can remove the bias on the expense of increased
standard deviation. In another study [16], a different version
of the NEG-ML algorithm including corrections of the
sources of contamination with the ordinary Poisson OSEM
scheme (OP-NEG3D), was evaluated. It was thus shown that
OP-OSEM had better noise and bias characteristics than fil-
tered back-projection (FBP) and OP-OSEM [16].

On the other hand, it was shown that scanner resolution
model (RM)-OP-OSEM reduces the variance of values in the
voxels and bias is reduced but not eliminated [18]. Compari-
son between regularized versus non-regularized statistical re-
construction techniques concluded that non-regularized
iterative reconstruction algorithms tend to be noisier in low-
count regions [19]. Algorithms like maximum likelihood-ex-
pectation maximization (MLEM) and OSEM give the
opportunity for a better modelling but at the same time noise
propagation is observed over iterations. By using a priori prob-
abilities, accuracy may be improved while maintaining image
quality [20]. Various filter types have been proposed and eval-
uated. Other researchers used Metz filters to obtain better
contrast against OSEM and post-filtered OSEM [21].

Further validation on phantom and clinical studies
showed that the Ordered Subsets Median Root Prior One
Step Late (OS-MRP-OSL) algorithm could reach a stable so-
lution with preservation of spatial details and noise reduc-
tion for both high and low statistics [22]. The noise reduction
against FBP and post-filtered FBP has been discussed previ-
ously [20]. The importance of optimal parameterization in
MRP-OSL for regularization on motion correction algorithms
has also been presented previously [23].

The aim of this study was to explore the effect of low sta-
tistics on OS-MRP-OSL reconstructed images using a widely
used open source software library. The selection of the reg-
ularization parameter is crucial to the image quality and to
quantitative accuracy but no robust is available in a practical
automatic way to set this parameter, which among others
depends on the number of measured coincidences. By op-
timizing OS-MRP-OSL parameters we determined whether
a satisfactory handling of the noise properties and bias can
be achieved compared to post filtered OSEM. Contrast to
noise ratio (CNR), root mean squared error (RMSE), bias, stan-
dard deviation (STD) and coefficient of variation (CoV) were
used as figures of merit to investigate the accuracy and qual-
ity of the reconstructed images. We used realistic PET data
of a thorax phantom, analytically simulated from MR data
with introduced lesions corresponding to tumours with dif-
ferent accumulated activities and sizes.

Materials and Methods

Simulation procedure
Magnetic resonance (MR) data from a 1.5T Philips Achieva™
scanner, using an ultra-short time-echo (UTE) sequence
were obtained. The 3D MR images were segmented and
used to produce realistic emission and attenuation data for
a Philips Gemini PET scanner. This methodology has been
previously described in detail [24, 25] and the data are avail-
able to the research community under the licence de-
scribed at http://www.isd.kcl.ac.uk/pet-mri/simulated-data/.

In brief, the emission data were created, by assigning typ-
ical standard uptake values (SUV) in the segmented MR im-
ages. Alike, the attenuation images were created by
assigning the corresponding attenuation values [26]. The
emission and attenuation values that were used are dis-
played in Table 1.

For the purpose of this study five different datasets were
produced introducing different amounts of Poisson noise in
the emission data. As a reference we used, Poisson noise cor-
responding to a typical 5min 3D fluorine-18-fluorodexyglu-
cose (18F-FDG) scan with 65×106 counts [24, 25] including
scatter coincidences. The simulated datasets corresponded
to scans with lower statistics than the reference ones and
are presented in Table 2.

Region

Air
Lung

Soft tissue
Bone
Liver

Myocardium

Attenuation
values (cm-1)

0
0.03
0.099
0.15
0.099
0.099

Emission
values
0
0.5
1
2.3
2.5
3.2

Table 1. Attenuation and emission values, for different types
of tissue, used in the phantom

Dataset ID: 1 2 3 4 5
Counts (x106) 4.68 9.37 14.1 23.4 42.2

Table 2. Counts corresponding to different Poisson noise levels,
for each dataset

Introduction of lesions
Nine spherical lesions corresponding to tumours were ana-
lytically inserted in the phantom in the same manner as de-
scribed previously [23]. All lesion characteristics are
presented in Table 3. The different backgrounds were used
as a substitute to ensemble noise due to the absence of mul-
tiple noise realizations of the simulated dataset [28].

Reconstruction
The OS-MRP-OSL algorithm was originally presented by Green
(1990 and 1990) [30, 31] and later was implemented in soft-
ware for tomographic image reconstruction (STIR) [32], an
open source library reconstruction of PET and single photon
emission tomography (SPET) images [33], (http://stir.sf.net).
Equation 1 demonstrates the OS-MRP-OSL [20]:



Where λ is the image, i is the pixel, β is the weight of the me-
dian root prior (MRP), Med (λ,i) is the median of a block, known
also as kernel, of neighbour pixels (e.g. 3×3×3, 5×5×5). The
size of the median kernel of OS-MRP-OSL was 3×3×3 voxels
to ensure that the smallest possible details would be pre-
served. Bettinardi et al. (2002) [22] have shown that details
with half the size of the median kernel filter are preserved. A
range of β was employed in order to explore the effect of small
(1, 5), medium (10, 50) and large (75, 100) values. By deploying
the aforementioned values, the trade-offs for different count
levels are to be observed. The penalization factors were con-
stant throughout the reconstructions.

In the case of post-filtered OSEM, different Gaussian filters
(i.e. 3×3×3mm3, 4×4×4mm3, 5×5×5mm3, 6×6×6mm3 and
12×12×12mm3) were applied to the result of each iteration.

Wilcoxon signed rank test
In order, to assess whether the values have stabilized after a
number of iterations we have used the Wilcoxon signed rank
statistical significance test. The aforementioned test was cho-
sen because the measurements may not follow a normal dis-
tribution. We defined the statistical significance threshold to
0.009. The values of bias, RMSE and CoV, which is defined as
the ratio of the STD over the mean were compared after
every iteration for all lesions. A u-value less than 0.009 indi-
cated that there was a statistical significance.

Figures of merit
The results were assessed by comparing the following figures
of merit. The values were calculated taking into account edge
voxels. For the particular investigation we selected lesions 2,
6 and 7. Lesions 2 and 6 had the largest diameter (14mm) but
different SUV values and resided in regions with different
background level. On the other hand, lesion 7 had the small-
est diameter of 8mm, SUV value in between the other two
and resided in a tissue with high background contribution.

CNR calculation
The CNR was calculated according to the formula:

Where, mLi is the mean value of the radioactivity distribution
in the ith lesion and mBi and σBi are the mean and STD values
of the corresponding background region of interest (ROI).
The background ROI for each lesion was of the same size and
resided in the same type of tissue.
The σBi was calculated using the formula:

Where, x is the value of each voxel in the ROI, N is the num-
ber of voxels and μ the mean value of the ROI.

Regional RMSE calculation
We used RMSE to evaluate the results in terms of accuracy
and precision, as it expresses the agreement between the es-
timated and the real image in a normalized quantitative
measure. 

Root MSE was defined by the following equation:

Where bias over a region j was defined as:

Where mean j is the mean of a region j in the reconstructed
images and meanorigj is the mean of the same region in the
noiseless original image.

Results

Wilcoxon signed rank test
The Wilcoxon signed rank test showed that when large β was
deployed, no significant change in terms of bias, RMSE and
CoV, was presented after 10 iterations. For β=50, p values were
0.066, 0.066, 0.173 for bias, RMSE and CoV respectively, while
for β=100 the corresponding values were 0.767, 0.26 and
0.173.

For low β values and for standard OSEM there seemed to
be a significant change (u<0.009), for the aforementioned
quantitative values even after 10 iterations. Based on the re-
sults of the test we decided that 10 iterations was a reasonable
point to stop and evaluate the results.

Visual comparison
The coronal views of the region of thorax (lesions 3, 6 and
9), for three different noise levels (datasets “1”, “2” and “3”) re-
constructed with OS-MRP-OSL with different β values and
OSEM post-filtered with different Gaussian filters, are pre-
sented in Figure 1.

The results demonstrated that reduced Poisson noise en-
sures an improved visual quality, as expected. For β=0 (Fig-
ures 1a, 1b and 1c), the images are extremely noisy, affecting
the lesion detectability. One must note that OS-MRP-OSL for
β=0 is the conventional OSEM.

The use of higher β values (second and third lines) strongly
improved the image quality for all datasets. While the image
quality on the least noisy dataset “5” has been improved the
beneficial impact on datasets “1” and “4” is higher.
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Lesions number

1
2
3
4
5
6
7
8
9

Diameter (mm)

14
14
14
14
14
14
8
8
8

SUV

9.5
7.5
7.5
6.5
4.5
4.5
6.5
4.5
4.5

Surrounding
tissue
Liver

Diaphragm
Lung
Liver

Diaphragm
Lung
Liver

Diaphragm
Lung

Table 3. Lesions characteristics

biasj = meanorig j - mean j
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In the case of post-filtered results (4th and 5th lines of Figure
1), the images are also improved compared to conventional
OSEM. The smoothing effect of the Gaussian filters reduced
the impact of the noise, but, on the same time introduced
strong blur in the images.

Visual comparison provided clear indications for the su-
perior performance of OS-MRP-OSL over post-filtered OSEM,
in terms of contrast and image blurring.

CNR and RMSE
CNR and RMSE over β for lesions 2, 6 and 7 after 10 iterations,
are displayed in Figure 2. For lesions 2 and 7, convergence
and maximum CNR are achieved for β=50. Lesion 6 dis-
played the tendency to improve further with β in all
datasets, except, dataset “5” which has already successfully
converged. For β=50, CNR was almost doubled.  

Root MSE, in most cases presented the lowest value for
β=10 or β=50. At the most noisy dataset, improvement of
up to 50% was presented. 

In Table 4 the CNR and RMSE values of post-filtered OSEM
for dataset “2”, are presented. In all cases the 4mm filter ex-
hibited better performance than 12mm, both in terms of
CNR as well as RMSE.

Comparing the values provided by OS-MRP-OSL to post-
filtered OSEM, one could see that after proper selection of
β, CNR and RMSE were strongly improved. 

Bias over STD
Bias versus standard deviation for OS-MRP-OSL for lesions 2,
6 and 7, and β ranging from 1 to 100, are presented in Figure
2 (left column).

The graphs show that increased β leads to reduced STD

Figure 2. Bias over STD for lesions
2, 6 and 7 reconstructed with OS-
MRP-OSL with various β (left col-
umn) and post-filtered OSEM with
different Gauss filters (right col-
umn) are presented.

Figure 1. Coronal views of the thorax region with lesions 3, 6 and 9 for different
noise levels, reconstructed with OS-MRP-OSL (top three rows) and post-filtered
OSEM (bottom two rows), are presented.
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Investigation on bias and STD showed that, if was β>50,
OS-MRP-OSL provided significantly lower STD and similar
bias, compared to post-filtered OSEM. One can see that for
FWHM 12mm, the values of post-filtered OSEM were similar
to OS-MRP-OSL, but in the expense of resolution degrada-
tion as illustrated in Figure 1.

Taking into account all the aforementioned results, Figure
3 presents the coronal and sagittal views of the images re-
constructed from the three lowest noise levels, using β=50.
In the coronal view, the lesions placed on the diaphragm are
pictured (lesions 2, 3, 8). In the sagittal view, lesions 7, 5 and
6, are visible.

The evaluation of other priors (e.g. quadratic, anatomical
priors) and reconstruction algorithms (e.g. AB-OSEM, NEG-
ML) may unveil new prospects. It will also be very interesting
to investigate the reaction of OS-MRP-OSL with the Cramer-
Rao bound [34] and include TF and PSF information in the
reconstruction. 

This work is relevant to PET-MR investigation where the
need for reduced injected dose is more relevant than in
PET/CT studies as they are not limited by the CT dose [35].
Furthermore, regularized reconstruction and optimization
of the penalization parameter according to the injected
dose, tracer, patient size and age will become issues of re-
search in the clinical context when these algorithms will be
used routinely (e.g. the recent reconstruction software mar-
keted by GE: Q. Clear™) [36-37]. The familiarity with the re-
constructed images by the physicians is another factor that
will require more time and effort for these algorithms to be
used in the clinic. However, once they become available it
will be helpful in identifying and staging tumors and other
small pathological conditions more accurately. 

In conclusion, visual, as well as, quantitative comparison
between OS-MRP-OSL and post-filtered OSEM provided in-
dications that under proper configuration, both can improve
the diagnostic value of noisy data. The iterative reconstruc-
tion algorithm OS-MRP-OSL can surpass post-filtered OSEM
in terms of CNR and STD, avoiding the negative impact of
blurring in the images. In terms of bias and RSME both algo-
rithms demonstrated similar performance.
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for all datasets, especially those with high introduced noise
levels. In the nosiest dataset “1”, the presented STD improve-
ment was more than 70% while when β was >75 a rise on the
bias, of approximately 7%, was observed in all cases.

Alike, bias over STD for post-filtered OSEM images of differ-
ent Gaussian filters, are presented in Figure 2 (right column).
The results for dataset “1” showed improvement of the STD
approximately 75%-80% accompanied by a 17% rise on bias.

Discussion

Visual comparison in Figures 1 and 4 demonstrated that OS-
MRP-OSL could limit the impact of the noise level of the data
without introducing the negative effects of blurring as post-
filtered OSEM. In lesions 2 and 7 OS-MRP-OSL, with β>50,
provided higher CNR, than post-filtered OSEM in most cases.
The amount of introduced noise in the datasets affected the
convergence of the algorithm. 

In terms of RMSE both algorithms performed in a similar
manner. The results displayed a strong dependence on the
amount of introduced noise in the dataset and the contri-
bution of the background area.

Figure 3. Coronal and sagittal views of reconstructed images using OS-MRP-OSL
with β=50 after 10 iterations with 23 subsets. Results for datasets “3”, “4” and “5”,
are displayed.

Lesion ID: 
FWHM

CNR:
RMSE:

4mm

23.80
3.68

12mm

19.90
3.61

4mm

10.60
2.32

12mm

9.10
2.3

4mm

0.56
3.05

12mm

0.54
3.05

Table 4. CNR and RMSE values for dataset “2”: OSEM images filtered with a range of Gaussian filters of different FWHM: 4mm and
12mm

2 6 7
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