More than the prostate: Intrapancreatic accessory spleen and papillary thyroid cancer detected with 18F-PSMA PET/CT

Abstract

Objective: Prostate specific membrane antigen (PSMA) positron emission tomography diagnostic computed tomography (PET/CT) is gaining an increasing role in the staging of prostate cancer and restaging in cases of bio-chemical recurrence. Our understanding of PSMA affinity for incidental pathological and non-pathological entities is also maturing although certain cases do present as diagnostic and management dilemmas. Subject and Methods: We present a case of a 55 years old man with prostate adenocarcinoma, with incidentally found pancreatic and thyroid lesions showing PSMA avidity. Results: We were able to utilize a heat damaged red blood cell single photon emission tomography (SPET)/CT scan and ultrasound guided fine needle aspiration (FNA) to accurately diagnose co-existent thyroid papillary carcinoma and intrapancreatic accessory spleen (IPAS) tissue, respectively. The patient avoided invasive pancreatic tissue sampling and subsequent staging with fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT. Conclusion: This is the first case to our knowledge describing both such lesions in one patient and the first case describing the use of 2-[3-(1-carboxy-5-[(6-[F]uoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido]-pentanedioic acid (18F-DC-FPyL)-PSMA PET/CT to detect IPAS. Furthermore we highlight the value of nuclear medicine diagnostic work up in complex cases.

Introduction

Intra-pancreatic accessory spleen is often a benign and an incidental finding. Histologically these have the same structure and function of a normal spleen, but are situated within the pancreas due to failure of fusion of splenic anlages during fetal development. This results in splenic parenchymal foci separate to the main splenic body, often along the path of the splenic vessels. Published data shows an incidence accessory splenic tissue anywhere in the body in up to 10%-30% of normal subjects, with 80% found in the splenic hilum followed by 17% in the pancreas. Most intra-pancreatic accessory spleen (IPAS) are asymptomatic and pose no clinical problem. However they can be complicated by hemorrhage, spontaneous rupture, cyst formation, undergo torsion or contribute to a hematological disorder. In these cases surgical resection of the IPAS may be indicated. It is thus of vital importance to accurately diagnose IPAS in a non-invasive manner as to avoid unnecessary invasive sampling or surgical intervention [1-6].

Case Report

A 55 years old male presented for a fluorine-18 prostate specific membrane antigen (18F-PSMA) PET/CT scan to investigate a rising serum prostate-specific antigen (PSA) level on a background of prostate adenocarcinoma treated with radical prostatectomy.

Prostate specific membrane antigen (PSMA) is a transmembrane protein that is over-expressed in prostate cancer cells and PSMA-binding ligands are bound to the extracellular domain of PSMA, although the transmembranous location of the binding domain and its enzyme activity enable the subsequent internalization of these ligands. In comparison to more commonly used gallium-68-labeled PSMA ligands, 18F-labeled compounds offer potential advantages due to higher production capacity and improved image resolution conferred by decay properties of 18F. There is growing data available on the
effectiveness and non-inferiority of 18F-DCFPyL-PSMA compared to 68Ga-PSMA for both initial staging of prostate cancer and restaging in suspected prostate cancer biochemical recurrence. Prostate specific membrane antigen PET/CT has shown improved sensitivity over CT, bone scintigraphy and magnetic resonance imaging (MRI) in prostate cancer nodal and metastatic staging, although can have difficulty with specificity for certain incidental findings, as our case demonstrates [7].

Two hours after an intravenous injection of 268MBq of 18F-DCFPyL-PSMA, the patient was scanned from vertex to knees and subsequent intravenous iodinated contrast-enhanced CT was also performed. The images showed an intensely PSMA-avid lesion posterior to the bladder apex suspicious for a recurrent prostate malignancy (Figure 1). However there was also mild focal PSMA uptake in an 11×10mm right thyroid nodule (Figure 2) and a mildly enhancing 31×15mm lesion in the pancreatic tail (Figure 3). The thyroid nodule was later biopsied with ultrasound-guidance and found to be consistent with a papillary thyroid carcinoma (PTC), and a technetium-$99m$ (99mTc)-heat damaged red blood cell (HDR-BC) scan was ordered to further investigate the pancreatic lesion.

For the 99mTc-HDRBC scan, 4mL of the patient’s blood was taken in a heparinized syringe and labelled using Ultratag. Subsequently the reconstituted product was damaged in a hot water bath at 49.5°C for 20min. Once cooled, 960MBq of HDRBC’s were injected into the patient intravenously and 30 minutes later he underwent both static and SPET/CT imaging of his torso. One of the spleens functions is to remove damaged blood cells. Therefore, by denaturing the erythrocytes with heat, they become stiff and get trapped in the splenic tissue because of fragmentation and spheroctysis. Normal erythrocytes will readily pass through because they are deformable [8]. The pancreatic tail lesion previously identified in the 18F-PSMA scan was found to be actively functioning splenic tissue (Figure 4).

There are multiple imaging modalities to diagnose IPAS, however a Nuclear Medicine 99mTc-HDRBC scan has been found to be the most sensitive and specific non-invasive method. This is because 90% of the radiopharmaceutical will be trapped by the splenic tissue, and the IPAS will not take up the radiopharmaceutical at all unless it is actively functioning splenic tissue. A 99mTc-sulphur colloid scan can also be used, however is less sensitive and specific, due to significant hepatic and marrow uptake of colloid, leaving only approximately 10% for splenic uptake [8]. Interestingly, intravenous immunoglobulin which is used to treat various autoimmune diseases will prevent visualization of splenic tissue unless stopped for at least 3 days prior to the 99mTc-HDRBC scan [9]. Contrast-enhanced CT and MRI are the other two non-invasive diagnostic modalities. IPAS will be similar to the attenuation/enhancement and signal intensity of normal splenic parenchyma in the main splenic body, on all contrast phases or sequences using CT or MRI respectively.
have also been reported to mimic neuroendocrine tumors, acinar cell carcinomas, solid pseudopapillary neoplasms and occasionally adenocarcinomas can appear similar. This makes a definite diagnosis difficult. Furthermore, on CT if the IPAS is <1 cm then partial volume artefacts can render such foci as hypodense relative to spleen and enhancement may not be uniform or well-appreciable [3,4,6,10].

For histological diagnosis, endoscopic ultrasound is the most common diagnostic approach, although is invasive. It involves the use of an endoscope and fine needle biopsy through the stomach to obtain both images and tissue samples of the IPAS. This can be a very specific test, but the biopsy sample can sometimes inadvertently pick up fragments of gastric mucosa or benign pancreatic islet cells which can impede analysis, and it also involves a general anesthetic [5,10].

After a thorough review of the current literature, there are no case studies reporting the findings of an IPAS or PTC from an 18F-PSMA PET/CT scan and very few using 99mTc-PSMA. Of note is a preliminary study by Dietlein et al. [2015] [11], which found that 18F-DCFPyL-PSMA and 99mTc-Ga-PSMA-HBED-CC PET/CT scans were found to have very similar scan results, but 18F-PSMA found marginally more suspicious lesions. Both radiopharmaceuticals target the same receptor, however they are synthesized differently and 18F-PSMA has more advantageous physical properties. This includes a longer half-life (110 vs 68 minutes) and larger allowable mean injected activity (318.4 MBq vs 128.3 MBq). This enables imaging at later time points, allowing a higher clearance rate and less non-specific binding, thus higher signal to noise ratios. In addition, 18F has lower mean positron emission energy (0.25 MeV versus 0.89 MeV) resulting in higher image resolution and more accurate quantification. Fluorine-18-PSMA also cleared faster from non-target tissue.

A case study by Taywade et al. [2016] [12] describes a patient who had a 99mTc-PSMA scan to assess for PTC metastasis in a 50-year-old male after a total thyroidectomy, negative radiodine scan and rising thyroglobulin levels. It revealed widespread skeletal and soft tissue metastatic disease. One hypothesis for this uptake is that tumor associated neovascular endothelial cells express PSMA. This is because in endothelial cells there is activation of the transcriptional enhancer region, leading to an increased PSMA transcription and abnormal protein expression.

Demirci et al. [2017] [13] refer to a 68 years old male needing prostate cancer restaging after increasing PSA levels 6 years post a radical prostatectomy and pelvic lymph node dissection. In addition to finding multiple lymph node prostate cancer metastasis on the 99mTc-PSMA scan, there was also multiple nodular, well-marginated lesions which had a high PSMA expression similar to peritoneal carcinosis within the peritoneal space. Due to a history of a splenic rupture and splenectomy after a motor vehicle accident, and the fact that PSMA is expressed in healthy splenic parenchyma, a diagnosis of splenosis was considered. A 99mTc-HDRBC SPET/CT scan in their patient subsequently revealed the peritoneal lesions to accumulate the denatured erythrocytes, confirming splenosis. Ga-68-ocreotide and 18F-ocreotide have also been reported to mimic neuroendocrine tumors in cases of IPAS [13-15].

In conclusion, this case study highlights the usefulness and comprehensive imaging evaluation that an 18F-PSMA PET/CT can provide. After only one non-invasive scan, the patient was diagnosed with recurrent prostate cancer, and also detected two incidental lesions. The thyroid and pancreatic tail lesions most likely would have otherwise gone undiagnosed with conventional non-molecular imaging. The patient can now be treated in his early stages of the prostate cancer recurrence, most likely with salvage radiotherapy. Minimally invasive surgery is the most common initial management of PTC and possibly even iodine-131 treatment after that [16]. Furthermore, due to the asymptomatic nature of his IPAS, that will most likely be left in situ, avoiding unnecessary and invasive treatment.

The authors declare that they have no conflicts of interest.

Bibliography