Errors in the absorbed and the administered 131I therapeutic dose in patients with Graves' disease. A suggested more precise technique

Abstract

Objective: The aim of this study was to evaluate the relative error (RE) in the thyroid absorbed dose (TD) of iodine-131 (131I) in patients with Graves’ disease comparing the simplified Quimby-Marinelli-Hine formula method (sQMHF) and the Standard Operational Procedures for dosimetry (SOPD) recommended by the European Association of Nuclear Medicine. Patients and Methods: This study included 45 patients with Graves’ disease: 12 men and 33 women; age 44.1 ± 12.8 years. Thyroid mass (TM) was measured using ultrasound. Uptake of 131I (RAIU) was tested at 2, 4-6, 24, 48-72, and 96-168h after its administration and the half-life ($T_{1/2}$) and resident time (RT) of 131I were computed. According to the sQMHF, a prescribed TD of 75Gy required 3.7MBq/g of 131I, correction based on the RAIU and $T_{1/2}$. Subsequently, the therapeutic TD was computed according to the SOPD and the RE was recorded. The data were analyzed using t-tests. Results: The TM, RAIU, therapeutic TD, and RE were $36.5 \pm 23.9 \text{g}$, 0.54 ± 0.14, $89.4 \pm 9.4 \text{Gy}$, and -0.01 ± 0.02, respectively. There was a significant difference (t-value 9.84, P<0.01) between the prescribed and therapeutic TD because the sQMHF ignores the absorbed dose deposited in the thyroid during the first 24h, which is included in the SOPD. In addition, the RE was significantly smaller than the variable coefficient (VC) of the therapeutic TD (t=-39.6, P<0.01). Conclusion: When the activity of 131I was calculated using the simplified Q-M-H formula, the therapeutic absorbed thyroid dose was significantly higher than what was expected for the prescribed dose. Precision of the individualized therapeutic absorbed dose could be improved by computing the activity of 131I using the standard operational procedures for dosimetry of the EANM.

Introduction

Iodine-131 (131I) is the first-line treatment for hyperthyroidism in adults with Graves’ disease [1-4]. Up to a level, the higher activity of the administered 131I, the higher the cure rate of hyperthyroidism [2]. According to the simplified Quimby-Marinelli-Hine formula method (sQMHF), the thyroid absorbed dose (TD) is determined based on the 131I activity, thyroid mass, radiiodine uptake (RAIU) at 24h, and the half-life time ($T_{1/2}$) of 131I in the thyroid [5]. That is to say, the higher the 131I activity, the higher the TD received. However, the clinical results of some cases that received 131I doses determined using clinical formulae did not match the physician expectations [6-7]. We hypothesized that the TD error might be too large to cause this situation; therefore, this study evaluated the relative error (RE) of TD calculated using the sQMHF.

Patients and Methods

Participants

Patients with Graves’ disease treated with 131I in our department from December 2013 to April 2017 were included in this retrospective study. The inclusion criteria were a low-iodine diet for two weeks before the RAIU test, discontinuation of methimazole for \geq3d of propylthiouracil for \geq14d before the RAIU test [1], age \geq20 years [2] and the last RAIU measured \geq4d after administration [8]. Pregnant and lactating women were excluded. A total of 45 patients (33 women and 12 men. 44.1 ± 12.8 years), were included in this study. All patients signed an informed consent before receiving treatment.
Thyroid mass measurement

The thyroid volume was measured using an ultrasonography scanner (IU-Elite, Philips) with an 8.5MHz linear array transducer and computed using the ellipsoid volume formula as previously described [9]. As the density of thyroid tissue is approximately 1.0g/mL, the thyroid mass was thus numerically equal to its volume in these units [1].

RAIU and T_{1/2,eff} measurement

A total of 50μL of \(^{131}\)I solution, with activity ranging from 74 to 185kBq, was drawn using a Finnpipette® F1 single channel variable volume (5-50±0.5μL) pipette (Thermo Fisher Scientific, Finland), and dropped into each patient’s mouth. Another 50μL of that solution was dropped into a tube that contained 25mL of water as a standard source. The patients fasted for 2h before and after the \(^{131}\)I administration. The RAIUt tests were performed using a thyroid probe (Beijing Hehai Advanced Technology CO. LTD, China) at 2, 4-6, 24, 48-72 and 96-168h after administration [10].

\[
RAIU_t = \frac{ThyCounts_t - Bg_t}{(StaCounts_t - Bg_t) \cdot e^{\frac{\text{eff}_{1/2} \cdot t}{24 \cdot h}}} \tag{1}
\]

ThyCounts: thyroid counts at time t, Bg: air counts at time t and StaCounts: standard source counts at time t. RAIUt was measured as T_{1/2,eff}, in the one compartment model, recorded as T_{1/2,eff,Q} [11]:

\[
T_{1/2,eff} = \frac{(t_t - 1) \cdot \ln(2)}{\ln(RAIU_{24h}) - \ln(RAIU_t)} \tag{2}
\]

The RAIUI was not measured until 4d after \(^{131}\)I administration [8].

Calculation of \(^{131}\)I activity

In China, Europe, and the United States, 2.6-4.4, 3.7-5.6, and 5.6MBq of \(^{131}\)I per thyroid gram, respectively, are typically administered for Graves’ disease [1-3]. A fixed dose per thyroid gram; i.e. 3.7MBq, was prescribed using formula (3) in this study [5],

\[
A(MBq) = \frac{3.7(MBq/g)}{RAIU_{24h}} \cdot \frac{(T_{1/2,eff} - Q)}{S} \tag{3}
\]

where A=prescribed \(^{131}\)I activity, M=thyroid mass and the \(T_{1/2,eff}, Q\) was corrected for 5 days.

Calculation of residence time (RT) and TD

According to the sQMHF, the RT could be calculated by formula (4), and recorded as RT_Q [12].

\[
RT_Q = 1.44 T_{1/2,eff} \cdot Q \cdot RAIU_{24h} \tag{4}
\]

According to the converted sQMHF [5], the TD could be calculated using the following formula (5)

\[
TD(Gy) = \frac{4.05 \times A(MBq) \times T_{1/2,eff} \cdot Q(d) \cdot RAIU_{24h}}{M(g)} \tag{5}
\]

When A is substituted for the right side of the formula (3), we can see that the prescribed TD is identical to 75Gy as long as 3.7MBq \(^{131}\)I per gram is administered and is not relevant to the thyroid mass.

The area under the curve (AUC) of the RAIU was computed using a two-compartment model solved via a least-squares curve fit [13]. The AUC was equal to the RT, recorded as RT_S; i.e. formula (6), as described in the SOPD prior to radiiodine treatment of benign thyroid disease that was recommended by European Association of Nuclear Medicine (EANM) [8, 12]; the RE of the personal RT_S was recorded. And the \(T_{1/2,eff}\) calculated using the method of SOPD was recorded as \(T_{1/2,eff,S}\) [8].

\[
RT_S = \int_0^t RAIU(t) \, dt \tag{6}
\]

The average energy, \(E\), deposited in the thyroid per decay of \(^{131}\)I [8]; is a constant for each thyroid and is associated with the thyroid mass, as described in detail in reference 8.

\[
E = \frac{M^{1/4} + 18 \cdot \gamma \cdot g}{7.2 \cdot MBq \cdot d} \tag{7}
\]

Thus, the personal therapeutic TD can be calculated using the following formula (8), described in the SOPD [8].

\[
TD = E \cdot A \cdot \frac{RT_S}{M} \tag{8}
\]

Finally, the RE of the personal therapeutic TD was equal to the RE of the personal RT_S.

Statistical Analysis

The activity of the prescribed \(^{131}\)I was calculated using formula (3) and then the personal therapeutic TD was computed using formulas (6)-(8) following the SOPD [8]. The results were analyzed using Student’s t-tests. P < 0.05 was taken as an indicating a statistically significant effect.

Results

The average thyroid mass, \(M\), and RAIU_{24h} were 36.5±23.9g, 2.83±0.05Gy · g · d^{-1} · MBq^{-1}, and 0.54±0.14, respectively. The average \(T_{1/2,eff,Q}\) and \(T_{1/2,eff,S}\) were 3.47±0.89d and 3.65±0.96d. There was no significant difference between them (t=1.22, P > 0.05). As we know that \(T_{1/2,eff}\) is high correlation with RT. When \(T_{1/2,eff,S} > T_{1/2,eff,Q}\) (n=21), RT_S was larger than RT_Q (shown in Figure 1). When \(T_{1/2,eff,S} = T_{1/2,eff,Q}\) (n=3), RT_S was also larger than RT_Q (shown in Figure 2), because the RT calculated using the sQMHF only included the area under the curve from 1d to infinity and ignored the area under...
the curve during the first day. When $T_{1/2eff-S} < T_{1/2eff-Q}$ (n=21), it was relatively complex. RT_S may also larger than RT_Q (n=17), or may not larger than RT_Q (n=4) (shown in Figure 3). Thus, the RT_S (3.15±1.14d) was significant larger than RT_Q (2.92±1.01d) (t=8.78, P<0.01).

Figure 1. A female patient with $T_{1/2eff-S}$ (3.87d) > $T_{1/2eff-Q}$ (3.33d). The area under the curve from 1d to infinity calculated by SOPD and sQMHF was presented as (blue+red) and red region. It is obvious that her RT_S (2.61d) > RT_Q (2.01d). (In fact, the time would extent infinity, however the infinity is hard to present, the last time point was set as day 12).

Figure 2. A female patient with $T_{1/2eff-S}$ (4.75d) = $T_{1/2eff-Q}$ (4.75d). The area under the curve from 1d to infinity was the same with these two methods, for the $T_{1/2eff-S}$ = $T_{1/2eff-Q}$. However, the sQMHF ignored the area under the curve during the first day, i.e. blue region, that was included in the SOPD. It is obvious that her RT_S (3.16d) > RT_Q (2.94d).

Figure 3. A female patient with $T_{1/2eff-S}$ (3.55d) < $T_{1/2eff-Q}$ (4.57d). The area under the curve from 1d to infinity calculated by SOPD and sQMHF was presented as blue and (blue+red) region, respectively. The area under the curve during first day was presented as green region. In this case, the area of green region was smaller than the redone, thus her RT_S (3.92d) < RT_Q (4.21d).

The prescribed 131I activity was 402.4±293.4MBq. The therapeutic TD was 89.4±9.4Gy and its variable coefficient (VC) was 0.105. The therapeutic TD was significantly higher than the prescribed TD (75Gy) (t=9.84, P<0.01). The RE of the therapeutic TD (intra-person) was -0.01±0.02, significantly less than the VC (0.105) of therapeutic TD (inter-person) (t=39.6, P<0.01). However, four patients’ therapeutic TD were not larger than 75Gy (listed in the Table 1). Both $T_{1/2eff-S}$ < $T_{1/2eff-Q}$ and RT_S < RT_Q were the outstanding features of them. For the sample size was too small (n=4) to gain a statistical significant difference neither between $T_{1/2eff-Q}$ and $T_{1/2eff-S}$ nor between RT_Q and RT_S.

Table 1. The effect half-life time and residence time in patients whose therapeutic TD≤75Gy

<table>
<thead>
<tr>
<th>Num</th>
<th>$T_{1/2eff-Q}$ (d)</th>
<th>$T_{1/2eff-S}$ (d)</th>
<th>RT_Q (d)</th>
<th>RT_S (d)</th>
<th>Therapeutic TD (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.57</td>
<td>3.55</td>
<td>4.21</td>
<td>3.92</td>
<td>70.7</td>
</tr>
<tr>
<td>2</td>
<td>2.86</td>
<td>1.86</td>
<td>1.68</td>
<td>1.60</td>
<td>72.2</td>
</tr>
<tr>
<td>3</td>
<td>4.32</td>
<td>3.97</td>
<td>4.04</td>
<td>4.01</td>
<td>74.4</td>
</tr>
<tr>
<td>4</td>
<td>2.98</td>
<td>2.88</td>
<td>2.74</td>
<td>2.69</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Discussion

Iodine-131I is an effective treatment for adult Graves’ disease [1-4, 14]; however, the $T_{1/2eff}$ is affected by multi-variable factors and is, therefore, hard to predict [15, 16]. Yet, it is important to measure the exact effect of personal treatment [8, 17, 18]. Up to a point and if we consider hypothyroidism as a goal for treatment, the higher the activity of the 131I absorbed dose administered, the greater the cure rate [2, 3, 19]. Nevertheless, the clinical results sometimes differ from the expected prognosis [20, 21]. One important reason for this difference might be that the therapeutic TD was quite different from the prescribed TD when the prescribed activity of 131I was calculated using clinical formulae (1-5). In this study, we calculated the personal therapeutic TD using the SOPD [8] and demonstrated a significant difference between the therapeutic and prescribed TD; this finding confirmed our hypothesis.

The therapeutic TD was 89.4±9.4Gy, significantly higher than the prescribed TD (t=9.84, P<0.01); 1.19 times that of the prescribed TD. Because the TD is proportion to RT, it is obvious to observe the main reason from Figures 1-3, especially Figure 2. The main reason was that the prescribed TD when calculated using the sQMHF included the absorbed dose accumulated from 1d to infinity and ignored the absorbed dose accumulated during the first day [22]. As a result of this flaw in the sQMHF methodology, the larger absorbed dose accumulated during the first day, the greater the difference between the therapeutic and prescribed TD. Another minor reason for the difference in TD is that the therapeutic TD is affected by the thyroid mass, which is included in formlulas (7) and (8) [8], but not in the converted sQMHF (75Gy per 3.7MBq/g). The $T_{1/2eff-Q}$ and $T_{1/2eff-S}$ was not significantly
different, which was similarity with prior results [11]. However, the little but not significant difference between them may add the variance of RT_Q because of the error propagation rule [23]. As the prescribed 131I activity determined using the $sQMHF$, the VC of the (inter-personal) therapeutic TD was 0.105 in this study, which may lead to a different result from the anticipated prognosis. If the prescribed 131I activity was determined using converted formula (8) (A=D-M/RT/E formula (9)) [3], the personal therapeutic TD could narrow the RE to -0.01±0.02, gain similar results with reference [24], offer more precision, and improve physicians’ predictive ability. For calculation of RT and $T_{1/2}^{eff}$, the same RAIU test times are required; so, we suggest updating the methodology: i.e. the prescribed 131I activity determined using formula (9).

The limitations of this study are: a) The prescribed activity of 131I determined using formula (8) requires more RAIU data than just the corrected 24h RAIU and requires mathematical skill. This will increase the workload of the medical team, which may delay adoption of this type of methodology in clinical practice. Therefore, we designed a software program based on the SOPD to overcome this weakness. Following the software we suggest prompts to input data on thyroid mass, RAIU, and the prescribed TD, the prescribed 131I activity is output within seconds. Thus, this software may partially ease the burden on the medical team. b) This type of methodology prolongs the last RAIU test and postpones 131I treatment. However, few patients with Graves’ disease must be immediately treated with 131I. In our department, if possible, propranolol and methimazole are administered to alleviate the symptoms of hyperthyroidism. Patients discontinue the methimazole for 3-5d [1-3] and undergo the RAIU test. Most patients are able to tolerate this approach to treatment.

In conclusion, if the prescribed 131I dose is determined using the simplified Quimby-Marinelli-Hine formula method ($sQMHF$), the difference between therapeutic and prescribed thyroid absorbed dose (TD) will be significant, and the variable coefficient of the inter-personal therapeutic TD will be large. This may be an important explanation for the difference between clinical results and the anticipated prognosis of Graves’ disease in patients who shall receive 131I therapy. According to formula (8), the personal prescribed 131I dose can be calculated more precisely and the error of (intra-personal) therapeutic TD can be narrowed. Thus, physicians will better predict the prognosis of therapeutic outcome.

Acknowledgement
We are grateful to Natural Science Foundation of China (3080-0274) and to Natural Science Foundation of Fujian Province (No. 2015J01516, 2016J01611) for funding this study

The authors of this study declare no conflicts of interest

Bibliography
