Serum differential proteomics analysis between papillary thyroid cancer patients with 131I-avid and those with non-131I-avid lung metastases

Abstract

Our aim was to compare the differences in serum protein fingerprints between papillary thyroid carcinoma (PTC) patients with 131I-avid lung metastases and those with non-131I-avid lung metastases, and to establish a screening model for screening 131I uptake in lung metastases. We collected serum samples from 46 PTC patients with 131I-avid lung metastases (Group A) and 23 PTC patients with non-131I-avid lung metastases (Group B) respectively, and both groups were matched for age and sex, without history of other tumors. Among them, 28 cases (19 cases in Group A, and 9 cases in Group B) were enrolled in the training set to establish the decision tree model, and another 41 cases (27 cases in Group A, and 14 cases in Group B) were incorporated for blind test set. The serum protein fingerprints were profiled using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS, USA) and the difference between the two groups was compared using the Ciphergen Proteinchip 3.1 software. Bioinformatics analysis was performed to construct the decision tree model based on the data of the training set, and the blind test was also conducted for blind test set. Our results showed that a total of 151 valid protein peaks were detected at the molecular range of 1300Da to 15000Da, among which 7 were significantly different between Group A and Group B ($P <0.05$). The blind test was conducted via the decision tree model, with a sensitivity of 92.6% (25/27) and a specificity of 85.7% (12/14). In conclusion, the difference in the serum protein fingerprints between Group A and Group B is quite accurate for screening 131I uptake in the lung metastases from PTC, conferring important clinical value for the prediction of 131I uptake and guiding of personalized 131I treatment decisions.

Introduction

Papillary thyroid carcinoma (PTC) accounts for the majority of differentiated thyroid carcinoma (DTC), as the most common thyroid cancer. The most common site of distant metastasis is the lung [1]. If early diagnosis and effective treatments are unavailable, the 5-year death rate remains as high as 70% [2]. Iodine-131I (131I) treatment is the preferred treatment approach for DTC metastases, and the significant uptake of 131I in metastases is a prerequisite for achieving favorable therapeutic effects. Nevertheless, in clinical practice, approximately 10%-20% of patients with DTC lung metastases exhibit non-131I-uptake, which makes those patients unsuitable for 131I treatment. As we know, the routine clinical method of predicting the ability of 131I uptake in metastases is the diagnostic 131I whole-body scan (131I-WBS), however, which is only applicable by thyroxin withdrawal. Therefore, we would prefer to explore a simple serum approach to screen the ability of 131I uptake in lung metastases in DTC patients.

The serum proteome reflects all proteins and peptides that may be related with one gene and allows a more detailed evaluation of disease status using the human proteome. In this study, differential proteomic analysis on PTC patients with and without 131I uptake in lung metastases was performed to scan differentially expressed serum protein fingerprints between both groups. At present, the mechanism of the non-131I-avid lung metastases from PTC is not well understood. Serum proteomics may be a research tool for assisting to understand the mechanism of patients with non-131I-avid lung metastases.

At the same time, if proteomics is adopted to identify serum protein fingerprints differences to screen the ability of 131I uptake in lung metastases of DTC, the 131I uptake can be predicted in advance consequently, and those patients with significant 131I uptake can be chosen to receive 131I treatment. In turn, for those patients with non-131I-uptake, ineffective 131I treatment can be avoided, which is undoubtedly valuable for improving the therapeutic efficacy and reducing toxicity. Thus, one could have an alternative method to predict the ability of metastatic 131I uptake before 131I treatment in addition to the diagnostic 131I-WBS.
Materials and methods

General information
Specimen sources
To implement the 131I treatment, thyroxin withdrawal for at least 3 weeks was required before blood samples were drawn and 131I administered. Patients were instructed to avoid food containing iodine for 2 weeks. Serum thyroid stimulating hormone (TSH), thyroglobulin (Tg) and Tg antibody (TgAb) were measured in all patients before 131I treatment. Serum samples of 69 PTC patients with (Group A) and without (Group B) 131I uptake in lung metastases were collected. Both groups were matched for age and gender, without history of other tumors. The criteria for lung metastases is bilateral diffuse pulmonary nodules confirmed by CT scan combined with increased serum Tg level and could not be due to other causes like inflammatory or cancerogenic disease. After the ablation of residual thyroid gland, 131I-WBS showed diffuse 131I uptake in the lung were enrolled in Group A. In turn, 131I-WBS showed no 131I uptake in lung metastases were enrolled in Group B. The clinical features of the two groups were summarized in Table 1.

Grouping
The patients were divided into training set and blind test set, among which 28 cases incorporated in training set (19 cases in Group A, and 9 cases in Group B) were utilized to establish decision tree model, and another 41 cases enrolled in blind test set (27 cases in Group A, and 14 cases in Group B) were set for blind test.

Chips and reagents
Sodium acetate (NaAc), acetonitrile, trifluoroacetic acid (TFA), sinapinic acid (SPA) were purchased from Sigma (St. Louis, MO, USA), immobilized metal affinity capture-chips (IMAC3) and protein chip reader (PBS-IIc), Ciphergen Proteinchip 3.1 were purchased from Ciphergen Biosystems Inc (Fremont, CA, USA).

Serum sample preparation
Peripheral blood serum samples from patients in Group A and Group B were respectively collected under identical conditions of specimen collection, serum separation and specimen storage. After staying at room temperature for 2h, samples were centrifuged at 3000r/min for 15min, and supernatants were collected, aliquoted in 20μL portions and frozen at -80°C for future use. The frozen aliquots of serum sample were taken out and thawed on ice, and afterwards they were centrifuged for 10min at 12000r/min at 4°C to exclude the insoluble substances. The chips were activated by adding 100mmol/L CuSO$_4$ (10μL per well) and shaken in wet box, twice for 10min each. After CuSO$_4$ was removed, it was followed by three de-ionized (DI) water rinses. 10μL of 50mmol/L NaAc (pH 4.0) was added and stirred for 2min in wet box. It was washed three times in DI water after removal of NaAc. The ProteinChip Assay Cassette was placed in the Bioprocessor, and washed twice at room temperature for 5min with 200μL binding buffer (PBS with 500mmol/L NaCl, pH 7.2, 200μL per well) to balance chips.

Of each sera sample 6μL was diluted in 234μL PBS containing 500mmol/L NaCl (pH7.2), added to each well (200μL per well), and incubated for 90min at room temperature on an orbital shaker with shaking at 900rpm. The ProteinChip arrays were then eluted 2 times using PBS containing 500mmol/L NaCl (pH 7.2, 200μL per well), and the ProteinChip arrays were washed using 300μL deionized water. Each 0.5μl of saturated solution of SPA in 50% acetonitrile and 0.15% TFA was applied to each spot. After air drying, another 0.5μL of SPA was added to each spot.

Table 1. Clinical features of Group A and Group B in this study

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>48.73±5.46</td>
<td>49.92±6.24</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>15/31</td>
<td>7/16</td>
</tr>
<tr>
<td>Histologic variants of PTC</td>
<td>1 follicular variant of PTC</td>
<td>1 follicular variant of PTC</td>
</tr>
<tr>
<td>Duration of disease (months)</td>
<td>6.31±2.04</td>
<td>6.58±2.93</td>
</tr>
<tr>
<td>Stage of PTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IV</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Prior radiiodine treatment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Method of TSH elevation</td>
<td>Thyroxin withdrawal for 3 weeks</td>
<td>Thyroxin withdrawal for 3 weeks</td>
</tr>
<tr>
<td>Results of CT scan of lung</td>
<td>Diffuse small nodules</td>
<td>Diffuse small nodules</td>
</tr>
<tr>
<td>Serum Tg level (ng/ml)</td>
<td>1896.45±53.07</td>
<td>1678.87±39.45</td>
</tr>
<tr>
<td>Serum TgAb level (IU/ml)</td>
<td>193.64±19.28</td>
<td>206.23±20.14</td>
</tr>
<tr>
<td>131I-WBS results</td>
<td>Diffuse 131I uptake in the lung</td>
<td>No 131I uptake in the lung</td>
</tr>
<tr>
<td>Extent of disease</td>
<td>no other distant metastasis</td>
<td>no other distant metastasis</td>
</tr>
</tbody>
</table>
Data acquisition

All ProteinChip Arrays were read on a ProteinChip reader (PBS-IIc). The parameters of the ProteinChip reader were set as follows. Time-of-flight (TOF) spectra had an intensity of 165 arbitrary units and a detector sensitivity of 7 with an optimum range of 1000-10000Da, and maximal molecular weight of 30000Da.

Peaks were detected automatically using Ciphergen ProteinChip Software Version 3.1 and polar plot was drawn, where the vertical axis represented the relative content of protein and the abscissa axis represented the mass-to-charge ratio (M/Z). All mappings were calibrated according to the total ion current to reduce the experimental errors caused by factors like chips differences and fluctuation of apparatus. The differences between peaks of proteins with identical mass-charge ratio in Groups A and B were assessed as P value, which was calculated by the Ciphergen Proteinchip 3.1 software. Valid protein peaks were defined as those with signal to noise ratios (S/N) greater than 5 and with the minimum peak threshold (% of all spectra) greater than 10%.

Establishment of decision tree and blind test

The data from the training set was used to calculate to build up the decision tree model. After 500-time cross validations were ran and the model that had the highest predictive accuracy was selected for optimal decision tree model and in turn the samples in blind test set were classified based on this model. The predictive method was as follows: For a sample from blind test set, if the predictive results turned out to prove it in Group A and really it came from Group A, a right result was achieved; on the contrary, the result was wrong. If the predictive results turned out to prove it in Group B and really it came from Group B, a right result was achieved; on the contrary, the result was wrong.

Statistical analysis

The differences in expression of protein with same M/Z between Groups A and B were statistically analyzed by the Wilcoxon rank-sum test.

Results

Differentially expressed proteins between Group A and Group B

One hundred and fifty-one peaks were detected within a molecular weight range of 1300-15000Da, and seven of them yield statistically significant differences (P<0.05). Among the seven peaks, five displayed high expression in the Group A, and two peaks showed high expression in Group B, as shown in Table 2. The box plot displaying the differential proteins peaks between Group A and Group B is shown in Figure 1 and the protein mass spectrometry of one protein peak exhibiting high expression in Group B is shown in Figure 2.

<table>
<thead>
<tr>
<th>Index</th>
<th>M/Z (Da)</th>
<th>Relative Peak Intensity</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group A</td>
<td>Group B</td>
</tr>
<tr>
<td>1</td>
<td>3889.8</td>
<td>1.95±2.27</td>
<td>3.87±3.12</td>
</tr>
<tr>
<td>2</td>
<td>4193.8</td>
<td>3.54±5.49</td>
<td>6.21±9.16</td>
</tr>
<tr>
<td>3</td>
<td>13578.0</td>
<td>0.27±0.12</td>
<td>0.15±0.05</td>
</tr>
<tr>
<td>4</td>
<td>14364.9</td>
<td>0.18±0.07</td>
<td>0.12±0.05</td>
</tr>
<tr>
<td>5</td>
<td>14792.4</td>
<td>1.02±2.98</td>
<td>0.07±0.06</td>
</tr>
<tr>
<td>6</td>
<td>14967.9</td>
<td>0.42±1.21</td>
<td>0.04±0.04</td>
</tr>
<tr>
<td>7</td>
<td>15512.8</td>
<td>0.66±2.00</td>
<td>0.02±0.03</td>
</tr>
</tbody>
</table>

Figure 1. The comparison between box plots of protein peaks in Group A and Group B. The peaks at M/Z 13578.0Da, 14364.9Da, 14792.4Da, 14967.9Da and 15512.8Da, displayed high expression in the Group A. (The peaks at M/Z 3889.8Da and 4193.8Da which showed high expression in Group B are not incorporated in this figure due to over-expression)

Figure 2. The protein fingerprints of differential protein peaks at M/Z of 4193.8Da in Group A and Group B (A1-A3 represent serum protein fingerprints in Group A and the peak at M/Z of 4193.8Da exhibited low protein expression; B1-B3 represent serum protein fingerprints in Group B and the peak at M/Z of 4193.8Da exhibited high protein expression).
after cross validations was chosen as optimal decision tree model, in which 3 layers and 4 nodes are included (Fig. 4). The optimal decision tree was used to perform classification and screening for 41 samples in blind test set. As a result, 37 cases were accurately judged with a correct classification rate of 90.2% (37/41), a sensitivity of 92.6% (25/27) and a specificity of 85.7% (12/14).

Discussion

Postoperative ¹³¹I treatment is preferred as the first-line treatment for DCT patients [3]. Sixty years of clinical practice has confirmed that ¹³¹I treatment is effective in reducing postoperative recurrence and metastases of DTC. It plays dual roles in diagnosis and treatment of DTC, which can greatly improve patients’ quality of life and prolong their survival. The prerequisite for accomplishing favorable ¹³¹I treatment is the metastases are ¹³¹I-avid, so plausible therapeutic effect can be achieved by ¹³¹I treatment. Nevertheless, there are still 10%-20% of DTC patients who have no uptake of ¹³¹I in lung metastases in the clinic practice, are irresponsive to ¹³¹I treatment and cannot be treated with ¹³¹I. Currently, large doses of ¹³¹I are generally given for one or two times postoperatively, and ¹³¹I-WBS is performed to assess the capacity of ¹³¹I uptake in the lung metastases. If the lung metastases are detected to be ¹³¹I-avid, patients will continue to receive ¹³¹I treatment; on the other hand, if lung metastases show low or no ¹³¹I uptake, patients have obviously been subjected to unnecessary ¹³¹I treatment and risks of radiation incurred by ¹³¹I and unnecessary stopping taking thyroid hormone before treatment.

If the ¹³¹I uptake in DTC metastases can be predicted in advance, on which a reasonable treatment plan can be developed before treatment, it will undoubtedly help to improve the clinical remission rate and long-term survival rates for patients. The diagnostic ¹³¹I-WBS could predict the ability of metastatic ¹³¹I uptake before ¹³¹I treatment. However, the mechanism of the non-¹³¹I-avid lung metastases from PTC is not well understood. Even though researches believe [4] that fluoro-18-fluorine-deoxy-glucose positron emission tomography (¹⁸F-FDG-PET) scan is of clinical value in determining the degree of malignancy, they hold that high ¹⁸F-FDG uptake present in the metastatic tumors indicates a relatively low degree of tumor differentiation and a relatively high level of malignancy, which leads to loss of ¹³¹I uptake, that is, ¹³¹I uptake is negatively correlated with ¹⁸F-FDG uptake (flip-flop phenomenon). However, for some DTC patients with distant metastases, the uptake of ¹⁸F-FDG and ¹³¹I can occur simultaneously, which pose a hurdle in prediction. In addition, ¹⁸F-FDG-PET examination is expensive, which is unaffordable for part of the patients. Therefore, exploring an affordable, easy and effective way to screen the ¹³¹I uptake in DTC metastases is well needed.

Since PTC accounts for the vast majority of DTC, the PTC patients with lung metastases were enrolled as subjects in this research. We sought to identify the serum proteins that associated with ¹³¹I uptake in lung metastases via serum differential proteomics analyses, so the ¹³¹I uptake could be screened based on the results, besides the diagnostic ¹³¹I-WBS.

Multiple genes are involved during the occurrence and development of diseases, which can induce changes of a large variety of proteins [5]. The changes in quality and quantity of serum proteins presenting at early stage of disease, can be measured through proteomics approaches and the biomarkers related to the earliest signs of disease can be screened [6]. Proteomics technology is used as a screening test for different proteins expressed in various stages of cancers, especially for tumor-associated low abundance serum proteins, which can accurately monitor the changes in protein spectrum during diseases [7]. The SELDI-TOF-MS applied in this study integrates protein chip technology with mass spectrometry and incorporates sam-

www.nuclmed.gr
Hellenic Journal of Nuclear Medicine • September-December 2011
ple separation and purification with biochemical reactions and detection. It is characterized by advantages of low-cost (15–20$ per test), high-speed analysis, small amount of sample, high specificity and resolution, and high throughput with high selectivity, and is widely utilized for the detection and screening of various disease-specific biomarkers and for determination of small molecules in serum as well as the development of new drugs [8, 9]. A series of new markers with high sensitivity and specificity used for early diagnosis of malignant tumors, including head and neck cancer [9], bladder cancer [10], prostate cancer [11-14], ovarian cancer [15, 16], breast cancer [17-18], liver cancer [19] and lung cancer [20, 21], have been identified by this methodology. In the view of the proteomics analysis in DTC, Wang et al. (2010) [22] adopted weak cation exchange (WCX2) chip to detect the protein fingerprints of PTC, benign thyroid nodes and normal serum, finding that there was significantly different in serum proteomic patterns between different pathological types and stages of thyroid cancers. The serum protein fingerprints of PTC patients and normal people were detected by Fan et al. (2009) [23] using WCX2 chip, and a diagnostic model for PTC was established based on serum protein fingerprints.

In the present study, the differentially serum proteins in PTC patients with [131I]-avid lung metastases and those with non-[131I]-avid lung metastases were identified for the first time using IMAC3 chip based SELDI-TOF-MS, and corresponding screening models were established to effectively screen the [131I] uptake of lung metastases from PTC. The results show that 7 protein peaks had significant difference in expression between both groups (P<0.05), and their M/Z were 3889.8Da, 4193.8Da, 13578.0Da, 14364.9Da, 14792.4Da, 14967.9Da and 15512.8Da, respectively. Five of the seven proteins displayed high expression in Group A and two (M/Z=3889.8Da and M/Z=4193.8Da) demonstrated high expression in Group B. No study reported in the literature indicated that other lung metastases coming from other primary cancers, or other lung diseases, including inflammatory or primary lung cancer show the same proteomic characteristics as of lung metastases from PTC reported here by us. The decision tree built in this study exhibits high accuracy in classifying and screening the [131I] uptake in lung metastases from PTC, and it had an accuracy rate of 90.2%, a sensitivity of 92.6% and specificity of 85.7%.

In conclusion, in the present original study, serum differential proteomics analysis was applied based on the SELDI-TOF-MS, which can detect the significant discrepancy in serum protein fingerprints between PTC patients with [131I]-avid lung metastases and those with non-[131I]-uptake lung metastases. This difference can successfully screen the ability of [131I]-uptake of lung metastases which is valuable for clinical decision making and personalized [131I] treatment planning and thus has high application potential. Further, mass spectrometry is deserved to be used as a research tool for assisting our understanding the iodine transport and secretary and metabolic properties of DTC patients with non-[131I]-uptake metastases.

Acknowledgements
We thank Dr Hua-Zong Zeng from Shanghai Minxin Information Technology Co., Ltd, who provided strong data analysis support for this study.

This research was supported by the New One Hundred Person Project of the Shanghai Jiao Tong University Medical School. The authors have nothing to declare for the other relevant categories.

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Bibliography

Sunset from Serifos, a Cycladic island in the Aegean Sea, Greece.