Comparison of image quality with 62Cu and 64Cu-labeled radiotracers in positron emission tomography whole-body phantom imaging

Masato Kobayashi1 PhD, Tetsuya Morii1 PhD, Tetsuya Tsujikawa2 MD, PhD, Kazuhiro Ogai1 PhD, Jyunko Sugama1 PhD, Yasushi Kiyomo3 PhD, Keiichi Kawai1-1 PhD, Hidehiko Okazawa2 MD, PhD

1. Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
2. Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
3. School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan

Keywords: 64Cu - Acquisition mode -Reconstruction algorithm -Image quality - 64Cu radiotracers

Correspondence address:
Masato Kobayashi PhD, Wellness Promotion Science Center Institute of Medical, Pharmaceutical and Health Science, Kanazawa University 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
Tel: +81-76-265-2500; Fax: +81-76-234-4366 kobayasi@mhs.mp.kanazawa-u.ac.jp

Received: 22 April, 2015
Accepted revised: 20 May, 2015

Abstract

Objective: PET imaging is possible with copper (Cu) isotopes, 60Cu, 62Cu, 64Cu and 62Zn. Although 60Cu- and 62Cu-labeled radiotracers are often used for preclinical and clinical PET studies, we do not know which radiotracers have better image quality for tumor imaging. In this study, we compare image quality between 62Cu and 64Cu imaging with different acquisition mode and reconstruction algorithm using a whole-body phantom for tumor imaging. Methods: In a National Electrical Manufacturers Association (NEMA) 2001 whole-body phantom, the concentration of 64Cu-ATSM and 62Cu-ATSM was, respectively, approximately 2.7 and 1.8MBq/mL in all the spheres and approximately 0.9 and 0.6MBq/mL in the background. After adjustment for true coincidence events between 62Cu and 64Cu, two-dimensional (2D) and three-dimensional (3D) PET scan data were acquired for 10min. The data were reconstructed using filtered back projection (FBP) and the ordered subset expectation maximization (OSEM) algorithm. Image quality of 62Cu and 64Cu was compared using recovery coefficient (RC), sphere-to-background ratio (SBR) and coefficient of variation (%COV). Results: There were little significant differences between 62Cu and 64Cu imaging, visually. Recovery coefficients of 64Cu images were higher than those of 62Cu images. The RC of 64Cu images with 3D acquisition mode and OSEM was the highest in all experiments. No SBR values were significantly different from the true value of 3.0 in 37mm sphere diameters, but 3D acquisition and OSEM yielded slight overestimations compared with 2D acquisition and FBP, the gold standard for quantification in PET studies. Percentage COV values of 64Cu with OSEM were significantly lower than those of 62Cu. Conclusions: Copper-64 radiotracers provide higher image quality than 62Cu-radiotracers in whole-body tumor imaging only when the 3D acquisition mode and OSEM algorithm are applied. However, the quantitative values for smaller tumors may be slightly overestimated.

Introduction

Copper (Cu)-labeled radiotracers have been used in some basic science research and for clinical PET. In particular, Cu-2-oxo-1,4-naphthoic acid (Cu-2-ONAA) (Cu-60 or Cu-62) and Cu-64 have been applied as potential markers of hypoxia and perfusion, respectively. Most clinical Cu-PTS/ATSM studies have used the short-lived positron-emitting radionuclide of 64Cu [3] or 62Cu [4-7] (Table 1). Copper-64 is potentially useful for not only tumor imaging [8] but also tumor therapeutics [9]. In these radiotracers, the amount of annihilation γ-rays following to β-decay yields higher image quality in Cu PET imaging unless saturation of the detector occurs. Lewis et al. (2008) reported 64Cu-ATSM appeared to have a higher image quality than 60Cu-ATSM in cancer of the uterine cervix [10]. However, the high-energy positron and gamma emissions of 62Cu, compared to 64Cu, are the greatest disadvantages of using 60Cu as a PET imaging agent [10]. In addition, they did not consider that true coincidence events between 60Cu- and 64Cu-ATSM imaging should be adjusted, although the radiation doses of the two radiotracers were the similar in whole body imaging.

Instead of 60Cu, 62Cu-ATSM has been utilized because 62Cu-ATSM generates 65Zn/63Cu [11-13] and it is less expensive. Moreover, a clinical study showed that the radiation exposure from 62Cu is lower than that from 60Cu [14].

However, we do not know which radiotracers of 62Cu and 64Cu have better image quality for tumor imaging. In this study, we compare image quality between 62Cu and 64Cu imaging with different acquisition modes and reconstruction algorithms using a National Electrical Manufacturers Association (NEMA) 2001 whole-body phantom.
Materials and methods

Preparation of 64Cu- and 64Cu-ATSM

The 64Cu-glycine (no-carrier-added 64Cu) solution was obtained from a 64Zn/64Cu generator system [15]. Copper-62-ATSM was prepared with a simple mixture of 64Cu solution (5mL) and 0.2mL of ATSM solution (0.5mM in dimethyl sulfoxide) in a sterilized vial [2, 16]. The radiochemical purity of 64Cu-ATSM was confirmed with high-performance liquid chromatography using authentic unlabeled Cu-ATSM before the phantom study. The radiochemical purity of 62Cu-ATSM was greater than 95%.

64Cu was produced as reported previously [17]. The purification of 64Cu and the preparation of 64Cu-ATSM were performed according to previously reported procedures [17, 18]. The radiochemical purity of the resulting 64Cu-ATSM was greater than 95%, as assessed by silica gel thin-layer chromatography (TLC; silica gel 60; Merck, Whitehouse Station, NJ, USA) with ethyl acetate as the mobile phase [19]. Radioactivity levels on the TLC plates were analyzed with a bioimaging analyzer (FLA-7000; Fujifilm, Tokyo, Japan). Elemental 62Cu could not be used for this phantom study because the 62Cu attached to the sidewalls of the whole-body phantom. Consequently, we have used 62Cu-ATSM, a type of 62Cu or 64Cu-labeled radiotracer.

Phantoms

A NEMA 2001 whole-body phantom [20], an elliptical phantom with six individually fillable spheres whose diameters are 10, 13, 17, 22, 28, and 37mm, was prepared. The concentration of 64Cu-ATSM in all spheres was approximately 1.8MBq/mL, which is as dense as that seen in a tumor in a clinical scan [10]. The background was approximately 0.6MBq/mL for 64Cu-ATSM. However, the concentration of 64Cu-ATSM was approximately 2.7MBq/mL in all spheres, with a background of approximately 0.9MBq/mL because we prepared the phantoms to have the same radioactive counts between 64Cu and 62Cu, considering the half-life of 62Cu (23.7min) and 64Cu (12.7h) because their image quality can be compared when their radioactive counts are almost the same. Before starting the acquisition, we regulated and adjusted the true coincidence counts between 64Cu-ATSM and 64Cu-ATSM.

PET scan

The study was approved by the Ethics Committee of the University of Fukui, Faculty of Medical Sciences. A whole-body PET scanner (Advance; GE Healthcare, Milwaukee, Wisconsin, USA) capable of simultaneous acquisition of 35 image slices, with an interslice spacing of 4.25mm, was used for data acquisition [21]. This scanner has 12,096 bismuth germanate crystals with transaxial, axial and radial dimensions of 4.0, 8.1 and 30mm, respectively. The phantom was positioned at the center in the scanner. Two-dimensional (2D) and three-dimensional (3D) dynamic PET scans with 1 frame/min were acquired for 10 min. A 10-min post-injection transmission scan was acquired after the emission scan with a 68Ge/68Ga rod source for attenuation correction.

Reconstruction

The data were reconstructed using a filtered back projection (FBP) algorithm with 0.4 cycle/pixel Hanning filter. For 2D PET, an ordered subset expectation maximization (OSEM) algorithm was applied using four iterations and 28 subsets, a 128x128 matrix, and post-smoothing with a 2.8mm full-width at half maximum (FWHM) post-filter. The 3D data were converted into sets of contiguous transaxial 2D sinograms using Fourier rebinning (FORE). Images 3D were reconstructed using FORE with FBP and FORE with OSEM followed by a weighted least-squares algorithm using three iterations and 32 subsets. 3D Gaussian post-smoothing was applied using 2mm FWHM. The parameters used for the reconstruction algorithms of both 2D and 3D datasets have been optimized in previous studies [22, 23] and by matching of noise on background areas between 2D and 3D images. The scatter correction method was used with the convolution subtraction method [24, 25]. In addition, normalize correction, delayed coincidence correction, dead time correction, and decayed correction were incorporated in the reconstruction algorithm. After reconstruction, the data was used to generate summed images of 10min from dynamic data of 1 frame/min.

Image analysis

Circular volumes of interest (VOI) were placed over visible and invisible hot sphere locations on the images using the corresponding transmission images. VOI (10cm) were also located in the background area. The recovery coefficient (RC) was calculated using the following formula:

\[
RC(\%) = A / B \times 100, \text{where } A \text{ is the mean pixel counts of each hot sphere, and } B \text{ is the known radioactive counts obtained using the gamma counter. Image noise of RC was defined as the coefficient of variation (%COV), standard deviation / mean\times100 \% \text{ of pixel values within the VOI on sphere diameter areas and background areas.}
\]

The sphere-to-background ratio (SBR) of approximately 3:1 was regulated corresponding to an injected patient activity of 370MBq(10mCi) of 64Cu-ATSM, assuming a typical patient weight of 70kg [5-7]. SBRs were calculated using mean pixel counts of each diameter sphere divided by those of background.

Statistical analysis

A statistical software package (JMP® version 9 SAS Institute Inc., Cary, NC, USA) was used for statistical analysis. We applied a Wilcoxon test for comparison of 64Cu and 64Cu or analysis of RC, SBR and %COV for 2D and 3D acquisition mode with FBP and OSEM algorithms, which were used as a multiplex analysis with a population mean value. Statistically significant differences were defined as $P< 0.05$.

Results

Figure 1 shows images of the whole-body phantom. There were little significant differences between 64Cu and 64Cu imaging, visually. We could not identify the smallest sphere region (10mm diameter) in all cases.
We could not identify the smallest sphere region (10mm diameter, arrow) with either the FBP or OSEM algorithm. There were no significant differences between ^{62}Cu and ^{64}Cu imaging, visually.

In Figure 2, RCs of ^{64}Cu images were higher than those of ^{62}Cu images. Especially, 3D acquisition and OSEM produced the highest RC on ^{64}Cu images. percent COV of ^{64}Cu images were lower than those of ^{62}Cu images. 3D acquisition yielded lower %COV than 2D acquisition, and OSEM reduced percent COV compared with FBP.

No SBR values were significantly different from the true value of 3.0 in 37mm sphere diameters (Table 2). In ^{64}Cu imaging, 3D acquisition and OSEM significantly elevated SBR in comparison with 2D acquisition and FBP in 13, 17 and 22mm sphere diameters. In background areas, %COV values of ^{64}Cu with OSEM were significantly lower than those of ^{62}Cu with OSEM (Table 3).

Discussion

PET imaging of ^{64}Cu had higher image quality than that of ^{62}Cu in the whole-body phantom only when the 3D acquisition mode and OSEM algorithm were applied, although these differences were little apparent visually in the phantom images. RCs of ^{64}Cu images were also greater than those of ^{62}Cu images (Fig. 2a, b) because ^{62}Cu has a higher maximum energy of β⁺ (Table 1), and consequently has a longer positron range than ^{64}Cu [26]. The 3D acquisition mode and OSEM algorithm yielded the highest RC on ^{64}Cu images. Fakhri et al. (2007) reported that 3D acquisition produced greater image quality in normal-sized patients [27]. Lartizien et al. (2004) also reported that the full 3D mode and Fourier rebinning OSEM offered better or equivalent detection performance than the 2D mode and OSEM for the same injected dose typically used in clinical practice [28]. As shown in Figure 1, images of the whole-body phantom at a ratio of sphere activity to background activity of 3.0.

Table 1. Decay properties of Cu radioisotopes.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life (h)</th>
<th>β^- (MeV)</th>
<th>β^+ intensity (%)</th>
<th>EC (%)</th>
<th>γ (MeV)</th>
<th>γ intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{60}Cu</td>
<td>23.7min</td>
<td>-</td>
<td>1.91</td>
<td>11.6</td>
<td>7.2</td>
<td>0.511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.98</td>
<td>49</td>
<td>0.826</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.95</td>
<td>15</td>
<td>1.33</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.77</td>
<td>5</td>
<td>1.79</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.94)</td>
<td></td>
<td>3.12</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{61}Cu</td>
<td>3.3h</td>
<td>-</td>
<td>0.93</td>
<td>5.5</td>
<td>36</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.22</td>
<td>51</td>
<td>0.373</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.16)</td>
<td></td>
<td>0.511</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.656</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.19</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>^{62}Cu</td>
<td>9.67min</td>
<td>-</td>
<td>2.93</td>
<td>97.2</td>
<td>2</td>
<td>0.511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.579</td>
<td>0.65</td>
<td>17.6</td>
<td>40</td>
<td>1.35</td>
</tr>
<tr>
<td>^{64}Cu</td>
<td>12.7h</td>
<td>-</td>
<td>0.579</td>
<td>0.65</td>
<td>17.6</td>
<td>40</td>
</tr>
</tbody>
</table>

β: electron; β^+: positron; EC: electron capture; γ: gamma emission; (): average of end-point-energies
fractions of combination had the lowest standard deviation. Significantly yielded the lowest %COV in all cases because the increase overall costs [31, 32]. The longer half-lives of 60Cu and 64Cu gave slight overestimations compared with FBP because 60Cu emits just single γ rays (0.511 MeV). With 62Cu imaging, it may be possible to acquire emission data for up to 30min because of the shorter half-life; however, 64Cu images acquired over 10min will be similar to those acquired over 30min and can be compared with 64Cu images acquired over 10min. Therefore, including our results, 64Cu imaging produces the highest image quality in clinical Cu PET imaging when the 3D acquisition mode and OSEM algorithm are applied. However, specific Cu radioisotopes may need to be selected for each examination because of the potential radiation dose to patients. We must also be wary of potentially overestimated results when combining 3D acquisition and the OSEM algorithm in Cu imaging.

In conclusion, 64Cu radiotracers provide higher image quality than 62Cu radiotracers in whole-body tumor imaging. Although 64Cu imaging has better image quality when using a combination of a 3D acquisition mode and OSEM algorithm, the quantitative values for small tumors may be slightly overestimated.

Acknowledgements
The author thanks the staff members at the Biological Imaging Research Center, University of Fukui for their technical support.

The authors declare that they have no conflicts of interest.

Bibliography
4. Okazawa H, Yonekura Y, Fujibayashi Y et al. Clinical application and quantitative evaluation of generator-produced copper-62-PTSM as a...

