Chondroid hamartoma presenting as solitary pulmonary nodule: Results of dual time point ¹⁸F-fluorodeoxyglucose-PET and comparison with ¹⁸F-fluorothymidine PET and histopathology

To the Editor: The dual time point fluorine 18-fluorodeoxyglucose-positron emission tomography (¹⁸F-FDG-PET) characteristics of chondroid hamartoma presenting as solitary pulmonary nodule is described in this report. Hamartoma derives from the Greek word hamartia: sin. A 45 years old female was referred for ¹⁸F-FDG-PET study in whom contrast enhanced computed tomography (CT) scan of thorax demonstrated a well defined soft tissue density mass in the anterior segment of left upper lobe of size 4x3cm that showed contrast enhancement (Fig 1). There was no evidence of calcification and/or necrosis in the lesion. A suspicion of malignancy was raised in the CT report in view of small increase in diameter of the lesion on CT compared to a previous one. The whole body ¹⁸F-FDG-PET (Fig. 2a and b) showed mild tracer uptake at baseline ¹⁸F-FDG-PET and standardized uptake value maximum or SUVmax1 1.9, which decreased further in the delayed image SUVmax2 1.2. This was a decrease of 36.84% compared to baseline value, (SUVmax2-SUVmax1) x100/SUVmax1. Another PET study with fluorine ¹⁸-fluorothymidine (¹⁸F-FLT) on a different day showed negligible tracer uptake (Fig. 3), very faintly appreciable visually in the standard gray scale. Overall, both functional imaging examinations were highly suggestive of a benign lesion. Computed tomography guided fine needle aspiration cytology of the lesion was confirmatory of benign chondroid hamartoma (Fig. 4).

Pulmonary hamartomas constitute 5%-8% of all solitary lung tumors and about 75% of all benign lung tumors. They have little or no malignant potential, and most of them are asymptomatic. They are composed of tissues that are normally present in the lung, including fat, epithelial tissue, fibrous tissue, and cartilage. However, they exhibit disorganized growth [1]. Accurate imaging interpretation and diagnosis are important because bronchogenic carcinoma is an important differential diagnosis [2]. Frequently they are discovered as an incidental coin lesion on a routine chest radiograph [3]. Popcorn calcification is virtually diagnostic on chest X-rays [3]. It is important to appreciate that a CT scan may be often inconclusive especially if the hamartoma atypically lacks cartilage and fat cells. In a recent report of squamous cell carcinoma developing in the setting of pulmonary hamartoma, hypermetabolism was noted in only half of the mass that correlated with the site of malignancy in the lesion [4]. Imaging by both labelled somatostatin analogue technetium ⁹⁹m-depreotide (⁹⁹mTc-depreotide) and thallium ²⁰¹-chloride can also be helpful in excluding malignancy [5].

As for treatment, peripheral tumors are usually simply observed after diagnosis; central tumors may be excised. Overall prognosis is excellent, though there are rare reports of malignant transformation [6, 7].

The importance of partial volume corrected SUV and uptake in the reticuloendothelial system has been emphasized in the literature to differentiate false positive studies for lung carcinoma in various benign conditions [8-11]. Partial volume correction of SUVs is of particular value in small malignant lesions where it aids in accurate assessment of disease activity and estimating the correct SUV [9]. Dual time point ¹⁸F-FDG-PET...
PET appears to play an important role in enhancing the confidence of diagnosis [9]. In case of malignancy, this maneuver usually shows a rising SUVmax in delayed imaging, while benign lesions are described to show a falling trend, as was observed in the present case [9]. This was further substantiated by the finding in the 18F-FLT-PET that virtually did not show any appreciable uptake in the lesion. FLT is thought to be relatively more specific compared to 18F-FDG in that it, being a cell proliferation tracer, usually does not concentrate in benign lesions.

In conclusion, we showed mild uptake of 18F-FDG in the lesion and even lower in the delayed image, which indicated the benign nature of the lesion. The 18F-FLT-PET did not show any tracer uptake in this lesion.

The authors declare that they have no conflicts of interest

Bibliography


Sandip Basu MBBS (Hons), DRM, DNB, MNAMS, Saikat Nandy MSc, M.G.R., Rajan MSc, PhD, Mukta Ramadwar MBBS, MD, Surendra H Moghe BSc
1. Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annex, Parel, Mumbai.
2. Department of Pathology, Tata Memorial Hospital, Mumbai.

Sandip Basu MBBS
Radiation Medicine Centre (BARC), Tata Memorial Hospital Annex, Jerbai Wadia Road, Parel, Mumbai 400 012, E-mail: drsanb@yahoo.com