The diagnostic criteria of Graves’ disease and especially the thyrotropin receptor antibody; our own experience

Abstract

It is generally accepted that the thyrotropin receptor antibody (TRAb) has a stimulating activity and is the major pathogenic factor in Graves’ disease (GD). In spite of that, TRAb is not routinely examined in clinical practice. The aim of this article is to briefly review the subject and suggest protocols for the diagnosis, treatment and follow-up of patients with GD based on our own studies and referring especially to TRAb. Clinical symptoms and signs and thyroid hormones may have poor sensitivity or specificity, especially in cases of endocrine ophthalmopathy and subclinical hyperthyroidism. In these cases the TRAb test is 98% sensitive and specific with a diagnostic accuracy of almost 99%. By this test it is possible to differentiate between autoimmune and other forms of thyrotoxicosis such as autonomous hyperthyroidism, destructive thyroiditis, iodine induced hyperthyroidism etc. Antithyroid drugs decrease serum TRAb levels and also induce immune remission. If after treatment TRAb remains increased as in about 30% of our cases, patients will relapse. In pregnant women with GD the follow-up of serum TRAb levels is also important as predictive of immune thyroid disease in the newborn. Data presented in this article confirm that the determination of serum TRAb levels in some rare hyperthyroid disorders, such as associated autoimmune and autonomous forms and in epidemiological studies, is also justified.

Keywords: Thyrotropin receptor antibody – Graves’ disease – Diagnostic criteria – Clinical importance of criteria

Introduction – Historical background

Autoimmune hyperthyroidism (Graves’ or Basedow’s disease) is the result of an autoimmune stimulatory activity to the thyroid gland and probably to some extrathyroid tissues like retrobulbar tissue [1, 2]. Adams and Purves (1956) were the first to observe that in patients with Graves’ disease (GD) there was a stimulatory activity different from thyroid stimulating hormone (TSH) [3]. This substance was then called: “long acting thyroid stimulator” (LATS). It was shown later that LATS was an antibody of the immunoglobulin type, reacting with the membrane of thyrocytes [4].

Others have since described the concept of hormone-receptor activity [5] and recently the molecular basis of thyroid stimulating hormone receptor (TSH-R or TR) and its antibody [6, 7]. Also, the cloning of the recombinant human TSH-R has been described. The expression of human TSH-R has been described on transfected Chinese hamster ovary cells (CHO) [8] and on the leukemia cell line, K562 [9].

TSH-R is now being examined either by a bioassay or by a radio-receptor assay. The basis of the bioassay test is the measurement of a biological response induced after a stimulatory effect of TSH-R. This response may be the generation of cAMP, the release of T3, the formation of colloid droplets, etc. As a model of study, slices of thyroid tissue or thyroid cells culture were used [10-16]. Our method of using thyroid cells suspension is considered simple and reliable [17].

Adams and Kennedy (1967) were the first to detect by a radio-receptor assay (GRA) a gamma globulin which was protecting LATS from neutralization [18]. Smith and Hall (1974) showed that “stimulatory immunoglobulins” from sera of patients with GD, inhibit the binding of TSH to thyroid cell membranes [19]; this was the base for the TSH antibody radioassay. Modifications of the first assay followed [20-22]. The modification of Morgenthal (1999) has been noticeable: he used species specific, human, TSH receptor, and very practical technologic procedure - solid phase separation [22].

TSH-R or TR antibody (TRAb) is considered an important pathogenic factor for autoim-
mune hyperthyroidism and has been used: a) for the diagnosis and the differential diagnosis of GD, [23, 24]. b) to monitor treatment or predict remission or relapse of GD, [25, 26]. c) for early detection of neonatal hyper- or hypothyroidism and for its differential diagnosis [27] and d) to predict the evolution of Graves’ ophthalmopathy [1, 2, 28].

Although it is generally accepted that TRAb has a stimulatory activity and is the major pathogenic factor in GD, it is not routinely examined in clinical practice. The aim of this article based on our studies, is to suggest diagnostic protocols especially referring to the importance of TRAb.

The diagnosis of autoimmune hyperthyroidism

The diagnosis of GD is based on: a) the clinical signs and symptoms of the hypermetabolic state, b) the laboratory findings i.e. elevated free thyroid hormones and suppressed ultra-sensitive TSH, c) functional tests such as radionuclide uptake tests, d) the presence of ophthalmopathy, e) specific antibodies like the TRAb and f) ultrasonography findings.

Table 1. Sensitivity of clinical symptoms in patients with untreated GD (Unpublished data from 202 patients)

<table>
<thead>
<tr>
<th>Clinical signs</th>
<th>Sensitivity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss</td>
<td>78</td>
</tr>
<tr>
<td>Palpitation</td>
<td>60</td>
</tr>
<tr>
<td>Fatigue</td>
<td>59</td>
</tr>
<tr>
<td>Sweating</td>
<td>39</td>
</tr>
<tr>
<td>Nervousness</td>
<td>36</td>
</tr>
<tr>
<td>Heat intolerance</td>
<td>28</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>10</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>8</td>
</tr>
<tr>
<td>Weight increase</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. Sensitivity of clinical signs in patients with untreated GD (Unpublished data from 202 patients)

<table>
<thead>
<tr>
<th>Clinical signs</th>
<th>Sensitivity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goiter</td>
<td>81</td>
</tr>
<tr>
<td>Tremor</td>
<td>69</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>64</td>
</tr>
<tr>
<td>Ophthalmopathy</td>
<td>51</td>
</tr>
</tbody>
</table>

Figure 1. TSH receptor antibody (TRAb) and thyroid microsomal antibody (TMAb) findings in patients with GD before treatment and in stable remission [23].

The contribution of TRAb test for the diagnosis and differential diagnosis of GD

a) For autoimmune hyperthyroidism

Between 1986 and 2006, we have published the following data for the diagnosis of GD concerning the sensitivity and specificity of TRAb determinations performed by the porcine thyrotropin binding inhibition immunoglobulin test (pTBII), the human TBII test, or the thyroid stimulating antibody (TSAb) bioassay [30-36]. These reports are summarized in Tables 3 and 4 in Figures 2 and 3.

Based on the above findings we came to the conclusion that the TRAb test as performed by the pTBII test, when using porcine thyrocytes membrane (TRAK assay, BRAHMS, formerly Henning, Germany), had a sensitivity of about 80% and a specificity of 100%. The human recombinant TRAb (Dyno human, BRAHMS, Germany), had a sensitivity of 98% and a specificity of 100%.
The significantly higher binding inhibition of labeled TSH on the recombinant human TSH receptor (rhTR) compared to the porcine extracted and solubilized TSH receptor, is considered the main factor for the improved diagnostic sensitivity of rhTR [35, 37-39] (Fig. 3).

b) Differential diagnosis of GD

It is the opinion of the authors that all TRAb positive hyperthyroid patients have autoimmune hyperthyroidism (GD) while all TRAb negative have some other forms of hyperthyroidism such as autonomous or iatrogenous. Thus clinical practice if diagnosis is be based on the clinical signs and symptoms, hormone levels, etc. as mentioned above, may be inaccurate. Serum determination of TRAb is not a routine procedure, and in cases of suspected GD or in associated GD and Plummer’s disease if TRAb is negative, may lead to uncertain diagnoses. In such cases we suggest that another more sensitive TRAb test be used, or the same TRAb test be repeated. In cases of suspected GD with negative TRAb, we have found that half the patients after being re-examined by using a more sensitive or the same TRAb test, became TRAb positive. In the other half, the clinical status was re-evaluated and they were finally diagnosed as not having GD (Fig. 4) [36]. Others have reported similar experience [38, 39]. Some authors believe that there exists a condition of disseminated thyroid autonomy which shows some similarities with the true negative TRAb, GD [38-40].

Routine TRAb determinations may be important in some epidemiological studies. In an epidemiologic report we have been able to differentiate autoimmune from the other forms of hyperthyroidism [41].

c) For associated GD and Plummer’s disease (PD)

It has been statistically shown that some patients with GD may also have PD (multinodular toxic goiter and toxic adenoma). It has been reported that this case is found more often than if it was just a ‘statistical’ phenomenon [42,43]. Also, some patients with PD may develop GD after being treated with 131I [44,45]. We have reported some 20 patients with this entity [46]. The findings of one of them are shown in Figure 5.

The contribution of the TRAb test to monitor treatment of GD

Antithyroid drugs

Thiourea derivatives thionamides: mercaptopimidazole and propylthiouracil are the most often used antithyroid drugs.
The mechanisms of their action are: the blockade of biosynthesis of thyroid hormones (thyrostatic effect) and the suppression of TRAb synthesis (immunosuppressive effect) [47]. The thyrostatic effect is principal [48]. Almost all patients with GD have a decrease in serum concentrations of thyroid hormones if treated with high enough doses of antithyroid drugs [48-50]. This immunosuppressive effect may be a) indirect, caused by the diminution of thyroid hormones concentration [48], or b) direct, caused by a medical action on TRAb synthesis–effect on the intrathyroid lymphocytes and the immune system [51, 52]. The second possibility is also supported by our findings since in only 70%-80% of our patients treated, TRAb became negative, despite the diminished thyroid hormone values detected [31, 49].

Immunologic response

About two thirds of our medically treated patients responded to treatment and became TRAb negative. At the same time they also responded endocrinologically. In the remaining one third of the patients, TRAb values remained high. Some of these patients have manifested borderline hyperthyroidism and after the cessation of drug treatment have manifested hyperthyroidism. These patients were immunologically non-responders. According to our findings a small number of these parents, usually those with very high TRAb concentrations, became hypothyroid. This may be due to the conversion of stimulating TRAb to non stimulating TRAb which still can block the binding of TSH to its receptor. The mechanism of this immunomodulation has been reported by others [6, 48] and recently presented in a review article [52].

Higher, “immunosuppressive” doses of thionamides may often induce partial suppression of serum TRAb concentrations [50] (Fig. 6) and may be indicated in selected cases [54].

The significance of TRAb findings in the prediction of remission and relapse of GD

As “remission” we describe at least few months interval after the cessation of treatment, without signs and symptoms of thyrotoxicosis and with normal serum thyroid hormones concentration. The findings supporting the diagnosis of remission in GD are: normal serum “free” thyroid hormones, normal “ultrasensitive” TSH and negative serum TRAb, one to two months after medical treatment. Some authors consider remission if patients remain clinically and biochemically euthyroid for at least 15 months [45].

As “relapse” we describe the appearance of thyrotoxicosis after a period of remission. In clinical practice many patients are described as having a relapse although they did not previously have a remission [34]. The significance of the TRAb status is being illustrated in Figure 7.

If high serum TRAb persists during and also after the cessation of treatment, active thyrotoxicosis may be diagnosed, that may be subclinical. These patients are in clinical – endocrine - but not in immunologic remission. Similar results about the significance of TRAb findings during and after antithyroid drugs treatment in GD, have been reported by others [53-57].

TRAb in radiiodine and surgical treatment

We mainly apply radiiodine (131I) treatment to patients who are not immunologic responders, i.e. patients who are persistently TRAb positive. In some of these patients few weeks after treatment, serum TRAb increases and this may lead to progression of ophthalmopathy, while in others, serum TRAb gradually decreases, remaining positive for a longer period of time [49].

We have reported similar findings after surgical treatment, i.e. bilateral subtotal or near total thyroidectomy [49]. According to our recent unpublished data, among 36 patients with GD treated by subtotal bilateral thyroidectomy, more than 90%, five years after surgery, had serum TRAb concentrations close to zero or undetectable.

The importance of serum TRAb values for the prediction of neonatal and fetal hyper or hypothyroidism has been underlined by others [27, 58, 59] and also for the prediction of evolution of GD ophthalmopathy [1, 2, 28].

Conclusive remarks: Serum TRAb obtained by the best quality TBI assay, despite the fact that it measures total not only stimulatory, TSH antibodies, is the most sensitive and spe-
cific diagnostic parameter for autoimmune hyperthyroidism. Cases of GD with negative TRAb need further diagnostic evaluation. The TRAb test is also useful for the prediction of remission and relapse of GD after medical treatment.

Bibliography


54. Werner RS, Romaldini JH, Farah CS et al. Serum thyroid stimulating antibody, thyroglobulin levels, and thyroid suppressibility measurement as predictors of the outcome of combined methimazole and triiodothyronine therapy in Graves’ disease. Thyroid 1991; 1: 293-299.


