Is \(^{18}\text{F-FDG PET}\) really a promising marker for clinically relevant atherosclerosis?

To the Editor: Bural et al (2013) \([1]\), retrospectively investigated 143 subjects who received whole body fluorine-18-fluorodeoxyglucose–positron emission tomography \((^{18}\text{F-FDG PET})\) imaging for the assessment of non-cardiovascular diseases. They reported an increase of \(^{18}\text{F-FDG-positive lesions in various aortic segments, which increased with age, and were more pronounced in subjects being aged below 50 years as compared to those above 50. Bural et al}\) also found the highest segmental \(^{18}\text{F-FDG-uptake in the descending thoracic aorta, but not in the abdominal aorta, where the majority of the most severe atherosclerotic lesions essentially appear. In addition, they did not appreciate any significant gender difference. Despite the severe limitation that no correlation to vascular disease, risk factors, or any clinical parameter was available, this report again raises the question as to what positive \(^{18}\text{F-FDG imaging really reflects and whether it will ever reach the great expectations.}

Conventional radiotracers revealed an excellent experimental correlation \([2]\), as well as morphology \([3]\). Uptake ratios of symptomatic lesion vs. contralateral unaffected side were comparable between \(^{111}\text{In-platelets, }^{123}\text{I-LDL} [4]\) and \(^{18}\text{F-FDG} [5]. There was also a mass strategic correlation \([6]\), but no individual prediction of events at all \([7]\). Due to better statistics, image quality and solution PET imaging of atherosclerosis holds great promise. However, correlations between various tracers and vascular wall characteristics (and staining methodologies) in 1% cholesterol fed rabbits reveal that \(^{18}\text{F-FDG}\) is not always the best tracer (Table 1). Vascular foam cell content is reflected by \(^{111}\text{In-IgG} > ^{125}\text{I-oxLp(a)} > ^{18}\text{F-FDG} > ^{125}\text{I-LDL}\) (Brammen L, Palumbo B, Lupattelli G et al. Unpublished data). A close correlation to Framingham risk score \([8]\) is for example not helpful, as this score has a low predictive value of only 0.6 \([9]\).

The available clinical correlations between \(^{18}\text{F-FDG-uptake and arterial wall characteristics are poor. For example, Lederman RJ et al}\) (2001) \([10]\) reported a correlation between \(^{18}\text{F-FDG uptake with intima/media ratio, whereas no correlation was established in a paper by Ogawa M et al}\) (2004) \([11]\). On the other hand, Laitinen I et al \(2006\) \([12]\) described a correlation between \(^{18}\text{F-FDG-uptake and calcifications, however, Tatsuni M et al}\) (2003) \([13]\) did not observe this in his paper. The claim that inflammation and macrophage uptake of \(^{18}\text{F-FDG}\) may be able to characterize and identify early atherosclerotic lesions \([14, 15]\) has never been substantiated. Earlier studies reveal a negative correlation between \(^{18}\text{F-FDG uptake and smooth muscle cells}\) \([16]\), but a positive one with macrophages \([11]\). The extent of uptake by different vascular wall cells (e.g. endothelial cells, smooth muscle cells, macrophages) in different atherosclerotic lesion types under various biochemical conditions has thus far not been extensively studied, neither in vitro nor in experimental or clinical work. Only one recent report does deal with this issue \([17]\). Our preliminary studies show that the cellular uptake extremely varies depending on the local metabolic condition. For example, smooth muscle and endothelial cells, when exposed to pro-inflammatory cytokines, exhibit an extremely enhanced \(^{18}\text{F-FDG uptake}\) while local hypoxia results in an opposite behavior. This is not observed in macrophages. Furthermore, when cultured cells were studied, uptake was severely dependent on the duration of incubation and the type of stimulation. This data indicates that \(^{18}\text{F-FDG uptake}\) is enhanced in early foam cell formation, as well as in activated smooth muscle cells that eventually reach, under certain conditions, a comparable uptake. In addition, there is a lack of standardization and of prospective studies preventing reliable clinical interpretation \([18]\).

There seems to be only one consensus. There is no abnormal uptake of \(^{18}\text{F-FDG as well as of conventional tracers in the intact vascular wall and intra individual therapeutic intervention is truly reflected. The goal of non-invasive imaging in humans is to identify plaques at risk, an active lesion or the extent of the disease. As long as no prospective controlled data with other imaging modalities identifying vascular alterations defined per lesion and not per segment are available, it seems very unlikely that \(^{18}\text{F-FDG may significantly succeed in this particular indication.}

The authors declare that they have no conflicts of interest.

Bibliography

4. Virgolini I, O’Grady J, Lupattelli G et al. In vivo quantification of

Table 1. Functional morphology vs. tracer uptake

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Tracer</th>
<th>(^{18}\text{F-FDG})</th>
<th>(^{125}\text{I-LDL})</th>
<th>(^{125}\text{I-Lp(a)})</th>
<th>(^{111}\text{In-HIG})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mononuclear cells</td>
<td>0.8612</td>
<td>0.8380</td>
<td>0.8544</td>
<td>0.9133</td>
<td></td>
</tr>
<tr>
<td>Sudan III</td>
<td>0.7217</td>
<td>\textbf{0.8623}</td>
<td>0.8914</td>
<td>0.8512</td>
<td></td>
</tr>
<tr>
<td>Oil Red O</td>
<td>0.7016</td>
<td>0.8433</td>
<td>0.8563</td>
<td>\textbf{0.8617}</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{allp < 0.001 (total); n = 8 each (rabbits)}\)

Lindsay Brammen1 MD, Barbara Palumbo2 MD, Graziana Luptelli3 MD, Helmut Sinzinger1 MD

1. Isotopix, Institute for Nuclear Medicine, Vienna, Austria
2. Department of Internal Medicine and 3. Department of Nuclear Medicine, University of Perugia, Italy

Helmut Sinzinger MD, PhD
ISOTOPIX - Institute for Nuclear Medicine, Mariannengasse 30, A-1090, Vienna, Austria
Phone: +43.1.4082633, Fax: +43.1.4081366, Email: helmut.sinzinger@chello.at

Authors’ reply:

We wish to thank Prof. Sinzinger for his thoughtful letter to the Editor, raising some concerns about the role of 18F-FDG-PET imaging in assessing atherosclerotic plaque activity in normal aging and disease states. We agree with him about the issues that he has brought up in his communication with the journal about the role of this methodology as a routine test in the daily practice of medicine. We believe that the basic assumptions and concepts with regard to the nature of localization of 18F-FDG in the plaques are sound but not completely proven at this time. In fact, the observation made by our group [1, 2] was entitled,”18F-18 FDG uptake in the large arteries: a new observation,” indicating that we were unsure about the exact location of 18F-FDG uptake in the major arteries. However, the evidence is becoming increasingly strong for a significant association between positive 18F-FDG lesions and presence of atherosclerosis in either animals or human beings. Nevertheless, more work needs to be performed in a prospective manner to definitively validate the role of this technique in detecting and characterizing atherosclerotic plaques. I wish to point out that the efficacy of a technique such as 18F-FDG PET should be considered by taking into account the settings in which these small lesions are located. Partial volume effect (PVE) and corrections for its impact in accurate quantification of these thin structures is becoming clear as we have explained in this very important domain [3, 4]. As such, we may resort to assessing larger segments of vessels for accurate quantification of disease activity. We wish to point out that global assessment may prove to be superior to regional values generated by standard approaches that have been employed in past analysis of plaques [5]. Also, delayed imaging (at least 2 or preferably 3h) after injection of 18F-FDG may prove to be essential for optimal visualization of atherosclerotic lesions [6]. Up until now, most studies have been carried out with early imaging, and therefore, further work is needed to determine the optimal timing for such studies.

Bibliography

Gonca G. Bural1 MD, Drew A. Torigian2 MD, MA, Sandip Basu3 MBBS (Hons), DRM, DNB, Murat Fani Bozkurt4 MD, Mohamed Houseni5 MD, Abass Alavi6 MD (Hon.), PhD (Hon.), DSc (Hon.)

1. Izmir Katiq Çelebi University, Atatürk Research and Training Hospital, İzmir, Turkey
2. Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
3. Radiation Medicine Centre (BARC), Tata Memorial Centre Anxene, Parel, Mumbai 400012
4. Department of Nuclear Medicine, Hacettepe University, Ankara, Turkey
5. Department of Radiology, National Liver Institute, Egypt
6. Abass Alavi, Professor of Radiology, MD, PhD, DSc
Hospital of the University of Pennsylvania, Tel: 215 662 3069, Fax: 215 349 5843, Email: abass.alavi@uphs.upenn.edu

Hellenic Journal of Nuclear Medicine • January - April 2014 \Hellenic Journal of Nuclear Medicine • January - April 2014 63