To the Editor: Kaposi’s sarcoma (KS) is a rarely seen angioproliferative tumor associated with human herpes virus 8 (HHV-8) infection, also known as Kaposi sarcoma herpes virus (KSHV) [1-3]. Four epidemiological types of KS have been described: a) The classic type originally described by Kaposi, which is typically found in midaged or in the elderly, b) The endemic type, several subtypes of which have been described in sub-Saharan indigenous Africans prior to the acquired immune deficiency syndrome (AIDS) epidemic after 2000s, c) The iatrogenic type associated with immunosuppressive drug treatment, typically seen in organ transplant recipients, and d) AIDS-associated, epidemic KS, which is usually aggressive in HIV-related or in post transplant patients, but may be more indolent. Clinically, in KS we find dark blue or purplish macular or spindleshaped nodular skin lesions. The same lesions are found in pathology in the lymphoid, respiratory, and/or in the gastrointestinal tissues [4-7]. The disease carries a variable clinical course ranging from minimal mucocutaneous disease to extensive organ involvement. Treatment for localized pathology is surgery or radiation treatment, while widespread disease may be treated by systemic chemotherapy or immunomodulators [8-14].

Currently, fluorine-18-fluorodesoxyglucose positron emission tomography/computed tomography (\(^{18}\)F-FDG-PET/CT) is used as a very effective tool in monitoring treatment response for many \(^{18}\)F-FDG avid tumors. To our knowledge, the role of \(^{18}\)F-FDG-PET/CT in HIV-negative KS of the skin and soft tissues was documented in only one case report [8]. In that report, the authors documented a case of human immunodeficiency virus (HIV)-negative classic KS, which responded to target of rapamycin (mTOR), a kinase delivering phosphate groups to amino acid residues of downstream proteins. The treatment response to rapamycin was well demonstrated by PET-CT. No published report referring to the interferon (INF) response in a HIV-negative KS using \(^{18}\)F-FDG-PET/CT could be found in current literature till January 2010.

In case 1, a 76 years old man with violaceous plaques and nodular skin lesions diffusely involving the lower thigh, legs and upper extremities was admitted. He had no significant medical history except for asthma. His blood tests were normal. The histopathological diagnosis obtained from skin lesions of the thigh revealed low grade KS. Before starting INF treatment, he was referred to us for a \(^{18}\)F-FDG-PET/CT test for staging and treatment response. Fluorine-18-FDG-PET scan using 444MBq activity showed multifocal increased dermal and subdermal \(^{18}\)F-FDG uptake in the distal parts of the lower extremities more intense on the dorsal surface of the left foot (Fig. 1A and C). The lesions on the scan were fewer than lesions seen on physical examination. Upper extremities’ lesions showed no \(^{18}\)F-FDG avidity. Bilateral \(^{18}\)F-FDG positive axillary lymphadenopathy was an unexpected finding which may be due to benign or malignant lymphoproliferative disease related or unrelated with KS (Fig. 1E). No change in axillary lymph nodes sizes as compared to previous thorax CT findings was found indicating a benign course. A control PET/CT scan after 6 months revealed diminished metabolic activity in both axillas (Fig. 1B and F) and in the lower extremities (Fig. 1B and D). New lesions on the upper extremities were \(^{18}\)F-FDG negative.

Two cases of \(^{18}\)F- FDG PET/CT findings in HIV-negative Kaposi’s sarcoma. Original presentation of one case favorably treated with interferon.
The second case was a 77 years old woman with ulcerated plaques disseminated on the distal portion of both legs, since years. She had no significant medical history and blood tests were normal. Excisional biopsy from a dermal lesion of the right dorsal foot showed KS. One year later, similar lesions occurred around the excised area suggesting recurrence and the patient had palliative radiotherapy. On follow up, the patient had more dermal lesions and was admitted for restaging. A PET/CT study using 400MBq of 18F-FDG showed multifocal dermal and subdermal 18F-FDG accumulation, mainly on the right distal lower extremity (Fig. 2A, B and C). In addition, bilateral diffuse 18F-FDG uptake was seen in the distal portions of the legs suggesting lymphedema and venous stasis (Fig. 2A).

Figure 2. Second case, multifocal increased 18F-FDG uptake in dermal and subdermal regions, representing ulcerated plaques disseminated on the distal portions of both legs are shown in anterior position of MIP image (black arrows, A), in axial section at the mid thigh (arrows, B) and at proximal heel level (arrow, C). Bilateral diffuse 18F-FDG uptake seen in the distal portions of legs suggesting lymphedema and venous stasis was also notable (bold white arrows in A).

In conclusion, these two cases accentuated that HIV negative cutaneous KS can present with heterogenous 18F-FDG avidity. The 18F-FDG study may be useful in initial staging and in treatment monitoring.

The authors have no conflicts of interest.

Bibliography

Fevziye Canbaz MD, Deniz Ersoy MD, Tarik Basoglu MD.

Departments of Nuclear Medicine, Ondokuz Mayıs University Hospital, Samsun, Turkey

Fevziye Canbaz MD, Assoc.Prof. of Nuclear Medicine

Ondokuz Mayıs University, Medical Faculty, Nuclear Medicine Department, Kurupelit 55139 Samsun, Turkey

Tel: +90 362 45760 00 + 26 46, Fax: +90 362 4576041

E-mail: fcanzab@omu.edu.tr, fcanzabz@gmail.com