To the Editor: I read with interest the brief review of Dr. OT. Yaylali et al. in the Hell J Nucl Med 2007; 10(3): 160-163 concerning marginal zone lymphoma (MZL) of the mucosa-associated lymphoid tissue (MALT) type. As noted by the authors, whole body gallium-67 scan (GS) is helpful in the diagnosis, treatment and follow-up of conjunctival MALT lymphoma. We would like to add that the various histological types of non-Hodgkin’s lymphoma (NHL) differ in 67Ga avidity as well as unilateral or bilateral orbital 67Ga uptake needs different diagnostic approach. It has been reported that in low grade NHL, the sensitivity of GS was about 50% for MALT lymphoma [2]. The imaging protocol suggested by Even-Sapir et al. includes a baseline before treatment examination, in order to assess the 67Ga avidity of the lymphoma, followed by GS during and after treatment [2]. It is noted that unilateral orbital increased 67Ga uptake may indicate either a focal inflammatory or a neoplastic disease, thus requiring further evaluation. Eighty per cent of malignant orbital neoplasms and 20% of benign neoplasms show 67Ga uptake [3]. Thus unilateral orbital 67Ga uptake suggests further tests with other imaging modalities or direct pathology examination [3].

As for the unilateral orbital increased 67Ga uptake, this is a fairly common incidental finding and usually needs no further tests, though it may be due to an inflammatory process especially in cases of a systemic disease such as sarcoidosis or Sjögren’s syndrome [3].

Perhaps the authors of the above article would like to comment on the use of 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) and somatostatin receptor scintigraphy (SSR-S) in ocular MALT lymphoma. In most of NHL studies, 18F-FDG-PET was useful for the diagnosis and evaluation of treatment response of aggressive NHL, while data regarding the role of 18F-FDG-PET in different subtypes of indolent lymphoma were controversial [4-10]. Some authors found no focal tracer uptake with 18F-FDG in MALT lymphoma [6, 7]. Later the same group showed 18F-FDG uptake in 83% of the MALT lymphomas with plasmacytic differentiation [8]. Others reported that 81% of extranodal MZL patients had focal tumor tracer uptake [5]. The sensitivity of PET/CT in gastric MALT was found to be 38.9%, while in non-gastric MALT lymphoma it was 75% [4]. PET/CT detected active disease in 100% of the patients with advanced disease (stages III-IV) but only 42.3% in early stage disease (stages I-II). The sensitivity of this test depends on the location and the stage of the disease [4]. Normal glucose uptake in the stomach and the orbital region may sometimes interfere with the diagnosis of MALT lymphoma.

Others have reported that SSR-S was positive in 84% of the low-grade NHL patients with a specificity of 98%-100%. There has been a high proportion of negative results (44%) in MALT lymphoma [11]. Others found that SSR-S has comparable results with GS for the detection of MALT lymphoma [12] as in PET/CT studies. In primary gastric MALT lymphoma SSR-S scan was ineffective [13] while in primary extragastric MALT lymphoma, the uptake of the tracer was high (in all 10 patients studied) [13, 14]. According to the present data, SSR-S is not recommended for routine use in MALT lymphoma, while GS and 18F-FDG-PET imaging seem to be the methods of choice to diagnose ocular MALT lymphoma.

Bibliography

Vahid Reza Dabbagh Kakhi M.D.
Assistant Professor, Department of Nuclear Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
Tel: +98-511-8599359 Fax: +98-511-8593038
E-mail: dabbaghvr@mums.ac.ir
Author’s reply: We thank Dr D. Kakhki for his interest and comments on our paper, published in *Hell J Nucl Med* 2007; 10(3): 160-163, concerning marginal zone lymphoma of the mucosa-associated lymphoid tissue (conjunctival MALT lymphoma) [1]. As noted in our brief review, gallium-67 citrate (67Ga-C) scintigraphy is known to be the best available functional imaging modality for evaluating patients with non-Hodgkin’s lymphoma (NHL) and Hodgkin’s disease (HD). Because 67Ga-C is a tumour viability agent, the role of 67Ga-C scan is primarily for the follow-up of these patients. 67Ga-C scintigraphy can successfully differentiate between the presence of viable lymphoma, which requires further treatment, and fibrotic and necrotic tissues, which do not require treatment. Other tumour-seeking agents, such as thallium-201, technetium-99m methoxy isobutyl isonitrile and indium-111 octreotide, have been investigated in lymphoma, as an alternative to 67Ga-C scintigraphy in specific clinical settings, but are of limited value. Fluorine-18 fluorodeoxyglucose (18F-FDG) imaging is gradually replacing 67Ga-C scan for the assessment of lymphoma. The 18F-FDG overcomes some of the limitations of 67Ga-C while sharing its tumour viability characteristics [2]. However, the utility of 18F-FDG PET scans in staging and management of extranodal marginal zone lymphomas, remains unclear [3]. Many reports show a correlation between high 18F-FDG uptake value and high histologic grade of lymphoma. Although there is evidence that 18F-FDG PET imaging detects disease accurately in some low grade histologies such as follicular lymphoma and mantle cell lymphoma, a few studies with limited numbers of patients report that 18F-FDG PET imaging is unreliable for extranodal MALT lymphomas [3, 4]. However, some authors showed that MALT lymphomas have 18F-FDG avidity, and also that 18F-FDG PET for MALT lymphomas is useful for staging and the detection of sites of involvement or areas of transformation not appreciated with other standard imaging modalities [5, 6].

We did not perform 18F-FDG PET and 111In-SSR-S studies to our patient because he had a low-grade marginal zone conjunctival MALT lymphoma. Previously published reports have shown that both imaging methods are not better especially in these cases and not more cost effective than the 67Ga-C scan. Additionally, increased 18F-FDG uptake can detect inflammatory lesions but cannot differentiate them from MALT lymphoma. Because of that, we preferred to use 67Ga-C rather than the other radiopharmaceuticals. Furthermore, our study demonstrated that 67Ga-C scan findings may identify, stage and follow-up of patient with conjunctival MALT lymphoma.

Bibliography

Olga Yaylali Taşkaya, M.D.
Pamukkale Üniversitesi, Hastanesi, Nükleer Tip Anabilim Dalı, Doktoral cad. No: 42 20100, Denizli, Turkey.
E-mail: olgataskaya@yahoo.com
Tel: 0258 2410034 (157-163), Fax: 0258 2517487

Correction: In our Journal: 2007; 10(3): 185-186 in the letter to the Editor under the title: Radionuclide renography: a seldom used test for the detection of vesicoenteric fistula and authors: R. Sadeghi, M. Hiradfar, V. R. D. Kakhki, M. Kajbafzadeh, Fig. 2B was not properly published. Fig. 2B, which shows the actual urinary-enteric fistula is as follows:

This letter with the correct Fig. 2B was published online on the 19th of November 2007.